Подбор конденсаторов для электродвигателя и их подключение
Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей. Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка — помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться.
Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя. В первую очередь рекомендуем определиться с правильной емкостью этого вспомогательного устройства, и способами ее точного расчета.
А, что такое конденсатор?
Его устройство отличается простотой и надежностью — внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Но различные виды конденсаторов для электродвигателей отличаются поэтому легко ошибиться в момент приобретения.
Рассмотрим их по отдельности:
Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации — возгоранию либо появлению короткого замыкания.
Версии неполярного типа отличаются качественным взаимодействием с любым напряжением, что обусловлено универсальным вариантом обкладки — она успешно сочетается с повышенной мощностью тока и различными видами диэлектриков.
Электролитические часто называются оксидными считаются лучшими для работы с электродвигателями на основе низкой частоты, поскольку их максимальная емкость, может, достигать 100000 МКФ. Это возможно за счет тонкого вида оксидной пленки, входящей в конструкцию в качестве электрода.
Теперь ознакомьтесь с фото конденсаторов для электродвигателя — это поможет отличить их по внешнему виду. Такая информация пригодится во время покупки, и поможет приобрести необходимое устройство, поскольку все они похожи. Но помощь продавца тоже, может, оказаться полезной — стоит воспользоваться его знаниями, если не хватает своих.
Если необходим конденсатор для работы с трехфазным электродвигателем
Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или с помощью упрощенного способа. Для этого уточняется мощность электродвигателя на каждые 100 Ватт потребуется около 7–8 мкФ от емкости конденсатора.
Но во время расчетов необходимо учитывать уровень воздействия напряжения на обмоточную часть статора. Нельзя чтобы он превысил номинальный уровень.
Если запуск двигателя, может, происходить лишь на основе максимальной нагрузки придется добавить пусковой конденсатор. Он отличается кратковременностью работы, поскольку используется примерно 3 секунды до момента выхода на пик оборотов ротора.
Необходимо учитывать, что для него потребуется мощность увеличенная в 1,5, а емкость примерно в 2,5–3 раза, чем у сетевой версии конденсатора.
Если необходим конденсатор для работы с однофазным электродвигателем
Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть.
Но процесс их использования немного сложнее, поскольку трехфазные электродвигатели работают с помощью конструктивного подключения, а для однофазных версий потребуется обеспечить смещенный вращательный момент у ротора. Это обеспечивается с помощью увеличенного количества обмотки для запуска, а фаза смещается усилиями конденсатора.
В чем сложность выбора такого конденсатора?
В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства. И они отличаются доступными режимами работы электродвигателей:
- Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора — 70 мкФ для 1 кВт от мощности электродвигателя;
- Используется рабочий вариант конденсатора с емкостью в 25–35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
- Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.
Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.
В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.
Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.
Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.
Важно: Пусковая версия конденсатора должна обладать рабочим напряжением не менее 400 В, что связано с появлением всплеска увеличенной мощности до 300–600 В, происходящего в процессе пуска либо завершения работы двигателя.
Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:
- Его часто применяют для бытовых приборов;
- Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы — конденсатор;
- Подключается на основе множества схем с помощью конденсатора;
- Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.
Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.
Фото конденсаторов для электродвигателя
При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.
Как подключить асинхронный двигатель?
Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).
На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.
Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.
Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200–400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2–2.5, в данном калькуляторе используется 2.5.
При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.
Как подобрать конденсатор для трехфазного двигателя?
Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).
Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.
Онлайн калькулятор расчета емкости конденсатора
Расчет емкости конденсатора22:
Если имеется необходимость подключить асинхронный трехфазный электромотор в бытовую сеть, можно столкнуться с проблемой — сделать это, кажется, совершенно невозможно. Но если знаете основы электротехники, то можно подключить конденсатор для запуска электродвигателя в однофазной сети. Но существуют и бесконденсаторные варианты подключения, их тоже стоит рассмотреть при проектировании установки с электромотором.
Простые способы подключения электродвигателя
Проще всего будет подключить мотор при помощи частотного преобразователя. Существуют модели этих устройств, которые делают преобразование однофазного напряжения в трехфазное. Преимущество такого способа очевидно — нет потерь мощности в электродвигателе. Но вот стоимость такого частотного преобразователя довольно высокая — самый дешевый экземпляр обойдется в 5–7 тыс. рублей.
Есть еще один способ, который используется реже, — применение трехфазной обмотки асинхронника для преобразования напряжения. В этом случае вся конструкция окажется намного больше и массивнее. Поэтому проще окажется рассчитать, какие конденсаторы нужны для запуска электродвигателя и установить их, подключив по схеме. Главное — не потерять мощность, так как работа механизма будет происходить намного хуже.
Особенности схемы с конденсаторами
Обмотки всех трехфазных электромоторов могут соединяться по двум схемам:
- «Звезда» — при этом концы всех обмоток подключаются в одной точке. А начала обмоток соединяются с питающей сетью.
- «Треугольник» — начало обмотки соединяется с концом соседней. В итоге получается, что точки соединения двух обмоток подключаются к сети питания.
Выбор схемы зависит от того, каким напряжением питается мотор. Обычно при подключении к сети переменного тока 380 В обмотки соединяются в «звезду», а при работе под напряжением 220 В — в «треугольник».
На рисунке выше:
а) схема соединения «звезда»;
б) схема соединения «треугольник».
Так как в однофазной сети явно не хватает одного питающего провода, нужно его сделать искусственно. Для этого применяются конденсаторы, которые сдвигают фазу на 120 градусов. Это рабочие конденсаторы, их оказывается недостаточно при пуске электромоторов мощностью свыше 1500 Вт. Чтобы осуществить запуск мощных двигателей, потребуется дополнительно включать еще одну емкость, которая облегчит работу во время старта.
Емкость рабочего конденсатора
Для того чтобы узнать, какие конденсаторы нужны для запуска электродвигателя при работе в сети 220 В, нужно использовать такие формулы:
- При подключении по схеме «звезда» С (раб) = (2800 * I1) / U (сети).
- При подключении в «треугольник» С (раб) = (4800 * I1) / U (сети).
Ток I1 можно измерить самостоятельно, используя клещи. Но можно использовать и такую формулу: I1 = P / (1,73 · U (сети) · cosφ · η).
Значение мощности Р, напряжения питания, коэффициента мощности cosφ, КПД η можно найти на бирке, которая приклепана на корпусе электродвигателя.
Упрощенный вариант расчета рабочего конденсатора
Если все эти формулы кажутся вам немного сложными, можно воспользоваться их упрощенной версией: С (раб) = 66 * Р (двиг).
А если упростить по максимуму расчет, то для каждых 100 Вт мощности электромотора требуется емкость около 7 мкФ. Другими словами, если у вас мотор 0,75 кВт, то вам потребуется рабочий конденсатор емкостью не менее 52,5 мкФ. После подбора обязательно произведите замер тока при работе мотора — его величина не должна превышать допустимые значения.
Пусковой конденсатор
В том случае, если на мотор воздействуют большие нагрузки либо его мощность свыше 1500 Вт, одним только сдвигом фазы не обойтись. Потребуется знать, какие необходимы еще конденсаторы для запуска электродвигателя 2,2 кВт и выше. Пусковой подключается в параллель с рабочим, но вот только он исключается из цепи при достижении оборотов холостого хода.
Обязательно пусковые конденсаторы должны отключаться — в противном случае происходит перекос фаз и перегрев электродвигателя. Пусковой конденсатор должен быть по емкости больше рабочего в 2,5–3 раза. Если вы посчитали, что для нормальной работы мотора требуется емкость 80 мкФ, то для запуска нужно подключать еще один блок конденсаторов на 240 мкФ. В продаже вряд ли можно встретить конденсаторы с такой емкостью, поэтому нужно производить соединение:
- При параллельном емкости складываются, напряжение рабочее остается таким, как указано на элементе.
- При последовательном соединении складываются напряжения, а общая емкость будет равна С (общ) = (С1*С2*..*СХ)/(С1+С2+..+СХ).
Желательно устанавливать пусковые конденсаторы на электромоторы, мощность которых — свыше 1 кВт. Лучше немного снизить показатель мощности, чтобы увеличить степень надежности.
Какой тип конденсаторов использовать
Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов. Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП. Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.
На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов — они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.
Использование электролитических конденсаторов
Можно применять даже электролитические конденсаторы, но у них есть особенность — они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно — они имеют свойство взрываться.
Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.
Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400… 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.
Рабочее напряжение
Обязательно нужно учитывать один важный параметр конденсаторов — рабочее напряжение. Если использовать конденсаторы для запуска электродвигателя с очень большим запасом напряжения, это приведет к увеличению габаритов конструкции. Но если применить элементы, рассчитанные на работу с меньшим напряжением (например, 160 В), то это приведет к быстрому выходу из строя. Для того чтобы конденсаторы функционировали нормально, нужно, чтобы их рабочее напряжение было примерно в 1,15 раза больше, чем в сети.
Причем нужно учитывать одну особенность — если применяете бумажные конденсаторы, то при работе в цепях переменного тока их напряжение нужно уменьшать в 2 раза. Другими словами, если на корпусе указано, что элемент рассчитан на напряжение 300 В, то эта характеристика актуальна для постоянного тока. Такой элемент можно использовать в цепи переменного тока с напряжением не более 150 В. Поэтому лучше набирать батареи из бумажных конденсаторов, суммарное напряжение которых — около 600 В.
Подключение электромотора: практический пример
Допустим, у вас имеется электрический двигатель асинхронного типа, рассчитанный на подключение к сети переменного тока с тремя фазами. Мощность — 0,4 кВт, тип мотора — АОЛ 22–4. Основные характеристики для подключения:
- Мощность — 0,4 кВт.
- Напряжение питания — 220 В.
- Ток при работе от трехфазной сети составляет 1,9 А.
- Соединение обмоток двигателя производится по схеме «звезда».
Теперь осталось провести расчет конденсаторов для запуска электродвигателя. Мощность мотора сравнительно небольшая, поэтому, чтобы его использовать в бытовой сети, нужно подобрать только рабочий конденсатор, в пусковом надобности нет. По формуле вычисляете емкость конденсатора: С (раб) = 66*Р (двиг) = 66*0,4 = 26,4 мкФ.
Можно использовать и более сложные формулы, значение емкости будет отличаться от этого незначительно. Но если нет подходящего по емкости конденсатора, нужно произвести соединение нескольких элементов. При параллельном соединении емкости складываются.
Обратите внимание
Теперь вы в курсе, какие конденсаторы для запуска электродвигателя лучше всего использовать. Но мощность упадет примерно на 20–30 %. Если приводится в движение простой механизм, то это не почувствуется. Частота вращения ротора останется примерно такой же, какая указана в паспорте. Учтите, что если мотор рассчитан на работу от сети 220 и 380 В, то в бытовую сеть он включается только при условии, что обмотки соединены в треугольник. Внимательно изучите бирку, если на ней имеется только обозначение схемы «звезда», то для работы в однофазной сети придется вносить изменения в конструкцию электромотора.
Конденсатор в электродвигателе: что это такое и для чего он нужен
Асинхронные моторы активно используются в быту и на производстве. При запуске в некоторых случаях для них может не хватить крутящего момента. Чтобы решить эту проблему, используется пусковая цепь с особым образом подобранным конденсатором. Чтобы правильно его выбрать и использовать, нужно знать, зачем нужен конденсатор в электродвигателе и как правильно определить его характеристики.
Что такое пусковой конденсатор
Когда электродвигатель находится в рабочем режиме, его движение обеспечивается обмотками. Однако, когда в момент старта нужно начать вращение, обычных усилий двигателя недостаточно. Без использования дополнительных средств он только начнёт слегка подрагивать.
Обычно одним из элементов двигателя является рабочий конденсатор. Он накапливает заряд, который способен превышать рабочее напряжение, а затем отдаёт его в нужный момент. Однако для пуска его работы недостаточно. Для этого необходимо параллельно подключить ещё один конденсатор, который называют пусковым.
Его запускают на короткое время, которое не превышает нескольких секунд. Иногда это делают при помощи кратковременного нажатия пусковой кнопки, а иногда выключение производят автоматически после того, как двигатель стал набирать обороты.
Использование пускового конденсатора особенно важно в тех случаях, когда двигатель нужно запустить под нагрузкой. В этом случае потребуется увеличить стартовый момент в течение первых секунд работы.
В некоторых случаях двигатель запускают с незначительной нагрузкой. В таком случае пусковой конденсатор может не потребоваться. Это применяется для двигателей, мощность которых не превышает 1 квт. Отказ от его использования позволит упростить схему и снизить затраты. Иногда нагрузка может быть связана с особенностями конструкции. В таком случае можно принять меры для её снижения, что облегчит запуск двигателя в дальнейшем.
Что такое конденсатор
Эта деталь содержит две металлических пластины, между которыми находится слой диэлектрика. Когда к пластинам подключают напряжение, на них накапливается заряд. Электрическое находится внутри конденсатора. Оно тем сильнее, чем больший заряд находится на пластинах.
Если отсоединить напряжение от пластин, то конденсатор начинает отдавать заряд. Если используется переменный ток, то полярность напряжения будет периодически меняться. При этом на пластинах будет попеременно то положительный, то отрицательный заряд.
Ёмкость конденсатора является его важнейшей характеристикой. Она характеризует то, сколько энергии он способен пропустить через себя. Её измеряют в фарадах. Поскольку речь идёт об очень большой величине, обычно применяются приставки, которые обозначают, насколько небольшая часть используется. Чаще всего используются микрофарады (такая единицы равны 0,000001 фарады).
Для каждого конденсатора существует номинальное напряжение. При нём эта деталь способна долго и надёжно работать. Обязательно указывается предельная величина наработки, которая выражается в количестве часов.
Существуют различные типы конденсаторов:
- Полярные рассчитаны на использование в цепях постоянного тока. Важной особенностью является необходимость подключения в соответствии с указанной на них полярностью. Они обычно имеют небольшие размеры и относительно большую ёмкость.
- Неполярные могут подключаться независимо от полярности. Их используют в цепях переменного тока. У них размеры больше, чем у полярных.
- Электролитические. В них в качестве пластин используются листы фольги, а диэлектриком является тонкий слой окисла.
Для использования в качестве пускового конденсатора лучше всего подходят электролитические. Их часто используют при частоте переменного тока 50 Гц и напряжении 220-600 вольт. Конденсаторы могут иметь достаточно высокую ёмкость она может составлять сотни тысяч микрофарад.
Эти детали имеют высокую уязвимость к действию перегрева. При нарушении теплового режима они быстро выходят из строя. Неполярные конденсаторы не имеют этого недостатка, однако стоят в несколько раз дороже.
При параллельном подключении ёмкости складываются. В том случае, когда её не хватает, для увеличения можно параллельно подключить дополнительную деталь. В этой ситуации нет необходимости заново собирать пусковую цепь.
Применяются также другие типы конденсаторов. Например, это могут быть вакуумные, жидкостные, газовые и другие. Однако в качестве пусковых конденсаторов их не используют.
Иногда тот конденсатор, который имеется в конструкции, не справляется с запуском. В таком случае его рекомендуется удалить, а вместо него поставить тот, который имеет большую ёмкость. Для маломощных двигателей допустимо, чтобы один конденсатор выполнял функции рабочего и пускового.
Использование полярных конденсаторов в условиях переменного напряжения возможно тогда, когда подключение выполнено через диод. Теперь полярность контактов изменяться не будет. Однако если диод будет неисправен, то деталь выйдет из строя.
Использование асинхронных двигателей
Трёхфазные и однофазные двигатели асинхронного типа активно используются в различных отраслях хозяйства. Для этого имеется несколько причин:
- Простота конструкции.
- Надёжность и долговечность при использовании.
- Для того чтобы запустить мотор, нет необходимости использовать дорогие и дефицитные устройства.
- Мотор не требует слишком частого проведения технического обслуживания.
По внешнему виду можно легко отличить трёхфазные двигатели от однофазных. У первых всегда имеется 6 клемм, а у вторых их количество равно двум или четырём.
У трёхфазных моторов обмотки подключаются двумя способами: звездой или треугольником. Они предполагают использование напряжения, составляющего 380 вольт. Однако в быту оно применяется редко. Чтобы использовать такой мотор, нужно знать, как его правильно подключать.
Это делают с использованием фазосдвигающего конденсатора. Это позволит использовать трёхфазные двигатели при подключении к однофазной сети. В этом случае мощность мотора будет равна 50%-60% от номинальной.
Оптимальность работы трёхфазного двигателя обеспечивается при условии применения переменной ёмкости. Чтобы так сделать, на первом этапе применяют рабочий и пусковой конденсаторы, а на втором — только первый из них.
В быту часто применяются асинхронные однофазные двигатели. Для запуска обычно требуется дополнительная обмотка.
При выборе ёмкости конденсатора необходимо учитывать то, как зависит от неё величина пускового момента. При увеличении этой характеристики, происходит увеличение усилия. При определённом значении оно становится максимальным. После дальнейшего увеличения пусковой момент станет падать.
Какие характеристики учитывают при выборе
Установка конденсатора должна быть сделана строго по соответствующим правилам. Его выбор производится на основе следующей информации:
- Тип двигателя (однофазный или трёхфазный) и способ соединения обмоток (треугольником или звездой).
- Используемая сеть электропитания. В бытовых условиях чаще всего можно встретить 220 в. Также используется напряжение питания 380 в при условии, что сеть трёхфазная. Последний вариант часто применяется в промышленных условиях.
- Мощность двигателя.
- Коэффициент мощности в большинстве случаев равен 0,9.
- Коэффициент полезного действия электродвигателя.
Эти данные можно получить из инструкции по эксплуатации электродвигателя. Данные электросети должны быть доступны из других источников. Для вычислений можно воспользоваться онлайн калькулятором или сделать расчёты самостоятельно.
Существуют дополнительные параметры, которые также необходимо принять во внимание:
- Допустимое отклонение от расчётного значения.
- Температурный диапазон, в котором должно происходить работа детали. Для некоторых разновидностей выход за его пределы может привести к поломке.
- Уровень сопротивления используемого диэлектрика.
- Тангенс угла потерь.
Эти параметры не имеют решающего значения. Поэтому о них часто забывают. Однако, чем тщательнее подобран пусковой конденсатор, тем надёжнее и долговечнее будет происходить работа мотора.
Дополнительно нужно обратить внимание на размер и расположение детали. Обычно с увеличением ёмкости увеличиваются размеры детали. Иногда может быть выбор между марками различных производителей. Нужно выбирать те, которые выпускают более качественные и надёжные детали.
Как выбрать пусковой конденсатор
Чтобы он работал наиболее эффективно, нужно правильно подобрать ёмкость. Для её вычисления используются различные формулы, в зависимости от способа соединения обмоток. Вычисления выполняются следующим образом:
- Нужно определить рабочие ток и напряжение работы двигателя. При проведении вычислений для них применяются обозначения I и U. Величину тока берут из инструкции по эксплуатации для мотора, а в качестве U берут то, которое обеспечивается питающим напряжением.
- Ёмкость определяют по формуле C = (K х I) / U.
Если соединение обмоток выполнено треугольником, используется K = 4800, а при соединении звездой должно быть K = 2800. Результат вычислений представляет собой ёмкость, выраженную в микрофарадах.
При расчётах нужно учитывать номинальный ток. Речь идёт о максимально допустимом рабочем токе в условиях, когда работа двигателя происходит в нормальном режиме. Практически его величина зависит от имеющейся нагрузки. Если её нет, то значение будет минимальным.
Это значение называют током холостого хода. Оно фактически является компенсацией потерь, связанных с потерями энергии в обмотках, диэлектриками, трением и другими аналогичными причинами.
Если постепенно увеличивать нагрузку, то ток будет расти. Затем он достигнет номинального значения. При последующем росте ток будет расти по-прежнему, но обороты начнут падать. Длительное пребывание в этом режиме приведёт к повышенному износу оборудования и к вероятной поломке.
Определить номинальный ток можно не только из инструкции по эксплуатации, но и измерить самостоятельно. В последнем случае его величина будет определена более точно. Такое измерение можно провести следующим образом:
- Отключают конденсаторы.
- Запускают мотор в рабочем режиме.
- При помощи токоизмерительных клещей определяют силу тока.
На основе полученного значения определяют требуемую ёмкость. Затем приобретают нужную деталь и устанавливают её. При этом допускается отклонение от расчётной величины не более, чем на 15%.
При подключении однофазного мотора ёмкость рабочего конденсатора определяют следующим образом. Нужно на каждые 100 ватт номинальной мощности взять по 7 микрофарад. Для пускового ёмкость выбирают в 2-3 раза больше. Однофазные асинхронные моторы часто используются в домашней бытовой технике.
Для этой цели обычно выбирают конденсаторы следующих конструкций:
- металлобумажные, высокочастотные, которые имеют обозначение МБГЧ;
- термостойкие бумажного типа относящиеся к разновидности БГТ;
- бумажные в герметичном металлическом корпусе — КБГ-МН.
Если необходимо обеспечить вращение двигателя в обратном направлении, то потребуется изменить подсоединение к конденсатору. Для этого будет достаточно просто поменять местами клеммы. Если речь идёт о замене уже существующей детали, то удобней всего выбрать её с теми же характеристиками, что и раньше.
В качестве рабочего необходимо использовать неполярный конденсатор, предназначенный для использования с переменным током. Это связано с тем, что в процессе работы будет постоянно меняться полярность. Однако в качестве пускового допустимо использования полярного. Для того, чтобы предотвратить изменение знака напряжения, необходимо подключить эту деталь через диод.
Проверка при установке
После того, как был выбран подходящий пусковой конденсатор, его необходимо проверить. Для этого необходимо выполнить следующие действия:
- Сначала необходимо от электромотора отключить питание.
- Нужно обесточить конденсатор, поскольку на нём мог сохраниться остаточный заряд. Для этого требуется закоротить его обмотки.
- Теперь нужно снять одну из клемм и подключить прибор для измерения ёмкости.
- Щупы подключают к выводам конденсатора. После этого измерительный прибор покажет точное значение ёмкости.
При использовании мультиметра предварительно нужно установить главный переключатель в режим измерения ёмкости.
При проведении расчётов можно использовать упрощённый вариант. Известно, что пусковой ток может превышать номинальный в 3-8 раз. Поэтому можно просто использовать ёмкость в 2-3 раза большую, чем у рабочего конденсатора. Если ёмкости для запуска недостаточно, достаточно просто взять более подходящий конденсатор.
Разница между пусковым и рабочим конденсаторами
Чтобы лучше понимать, для чего нужен пусковой конденсатор, каковы особенности их применения, нужно знать об их различиях. Основными являются следующие:
- У них различное место установки. Рабочий является частью цепи рабочих обмоток двигателя. Пусковой представляет собой часть цепи запуска мотора.
- Конденсаторы различаются тем, когда именно они должны работать. Пусковой включён в цепь в течение первых нескольких секунд после запуска. Затем его отключают в ручном ли автоматическом режиме. Рабочий выполняет свои функции в течение всего того времени, пока работает двигатель.
- У каждого из них имеются свои функции. Пусковой обеспечивает сдвиг фаз между обмотками для обеспечения основного усилия при первоначальном запуске мотора. Рабочий обеспечивает вращение фаз, необходимое для нормальной работы электромотора.
- Для каждого типа конденсаторов различаются требования по рабочему напряжению. Пусковой должен быть рассчитан на такое, которое превышает питающее в 2-3 раза. Рабочий должен быть рассчитан на такое, которое больше поступающего в 1,15 раза.
В обоих случаях чаще всего используют конденсаторы типов МБГО, МБГЧ.
Как влияет величина нагрузки на выбор конденсаторов
Если деталь выбрана в соответствии с приведёнными здесь расчётами, то она хорошо подойдёт при равномерной нагрузке. Примером такой ситуации является работа вентилятора.
Если нагрузка меняется, то в этом случае можно воспользоваться следующей хитростью. Например, можно рассматривать циркулярную пилу, с помощью которой распиливают доски и брёвна. В первом случае очевидно, что нагрузка меньше, а во втором — больше.
Например, если были произведены расчёты по номинальному току и получена ёмкость, равная 10 мкф, то нужно использовать такой рабочий конденсатор при распиливании досок. Для работы с брёвнами его скорее всего будет недостаточно. В этом случае при выполнении работы подключают две таких детали параллельно.
Если этого не сделать, двигатель потеряет мощность. В результате он станет перегреваться и для работы на нём потребуется делать перерывы, чтобы дать мотору остыть.
Наиболее распространённые в России модели
Чаще всего можно встретить в продаже следующие марки:
- Конденсаторы марки СВВ-60 с исполнением в металлизированном полипропиленовом варианте. Они отличаются сравнительно высокой ценой.
- Плёночные марки HTC обладают достаточно высоким уровнем качества, но стоят немного меньше, чем СВВ-60.
- Э92 представляют собой бюджетный вариант пусковых конденсаторов. Они имеют относительно невысокую цену, но в качестве и надёжности уступают предыдущим двум вариантам.
Существует также ряд других моделей, но они распространены в меньшей степени.
Советы по использованию
Определение необходимых характеристик и выбор модели требуют обычно значительных усилий. В связи с этим имеет смысл принять во внимание несколько советов:
- Обязательным является использование пускового конденсатора при работе с моторами большой мощности или в тех случаях, когда приходится запускать вращение вала с нагрузкой.
- Двигатели мощностью меньше 1 квт обычно могут работать без использования пускового конденсатора. Такие моторы часто используются в бытовой технике.
Выполняя подключение пусковой цепи нужно тщательно выполнять все необходимые правила. Ошибка может привести к возникновению поломки или аварийной ситуации.
Заключение
Конденсаторное пусковое подключение полезно использовать в тех случаях, когда мотор находится под нагрузкой и для его запуска требуется значительное усилие. Пусковой конденсатор также полезен при подключении трёхфазного мотора к однофазной электросети. Его ёмкость должна быть рассчитана на основе номинального тока и напряжения сети. Если величина недостаточно, нужно поменять конденсатор тот, который имеет большую мощность.
Как работает конденсаторный электродвигатель и для чего он нужен
В современном оборудовании используется несколько разные виды электродвигателей . Разные по конструкции, характеристиками и принципу работы все эти двигатели подбираются для каждого конкретного случая по
своим параметрам. Вместе с тем, довольно часто в приборах и оборудовании необходимы электродвигатели с возможностью подключения к однофазной сети. Одним из подходящих вариантов выступает конденсаторный электродвигатель, устройство и принцип работы которого мы рассмотрим в пределах данной статьи.
Устройство и принцип работы
Говоря о конденсаторных асинхронных двигателях, речь в первую очередь будет идти об электромоторах, изначально рассчитанных для подключения к однофазной сети. Это несколько перекликается с двухфазными или трехфазными двигателями, переделанными для подключения в обычную однофазную сеть на 220 Вольт. Но существенным отличием этих электродвигателей выступает то, что здесь конденсатор выступает как обязательное условие электрической схемы и включение в трёхфазную сеть 380 Вольт такого асинхронного двигателя просто невозможно.
Устройство и принцип работы конденсаторного двигателя основаны на физических свойствах асинхронного двигателя, но для создания движущей силы и вращения магнитного поля в цепь обмоток включен пусковой конденсатор.
По своему устройству он не отличается от обычного асинхронника и в составе имеет:
- Неподвижный статор в массивном корпусе с рабочей и пусковой обмотками.
- Закрепленный на валу ротор, приводимый в движение силой электромагнитного поля, создаваемого обмотками статора.
Обе части электродвигателя соединены между собой на подшипниках качения или скольжения (втулки), закрепленных в крышках корпуса статора.
По принципу работы конденсаторный электродвигатель, как отмечалось выше, относится к асинхронным – движение осуществляется за счет создания электромагнитного поля обмотками статора, сдвинутыми относительно друг друга на 90 градусов. Единственное отличие от трехфазных асинхронных электродвигателей заключается во включенном в цепь конденсаторе, через который включаются вторая обмотка электродвигателя.
Обычный асинхронный двигатель при включении в сеть начинает работу с пусковой обмоткой. После того как ротор набрал обороты, пусковая обмотка отключается и работу продолжает только рабочая обмотка. Минусом такого электромотора с пусковой обмоткой выступает момент пуска, когда ротор начинает набор оборотов. Для электродвигателя важно чтобы в этот момент не было нагрузки, или нагрузка была небольшой. Пусковой момент получается ниже, чем у аналогичных по мощности трёхфазных моторов.
В схеме подключения конденсаторного асинхронного двигателя есть фазосдвигающий конденсатор. При подключении в сеть через конденсатор во второй обмотке возникает сдвиг фаз, равный 90 градусам (на практике немного меньше). Это способствует тому, что в работу ротор включается с максимально возможным крутящим моментом.
Такой запуск обеспечивает включение двигателя как на холостом ходу, так и под нагрузкой. Это очень важно для подключения двигателя под нагрузкой. На практике по такой схеме подключается мотор от стиральной машины старых моделей. В момент пуска двигатель должен начать вращать воду в баке, а это существенная нагрузка на электродвигатель. При отсутствии пускового конденсатора двигатель не будет запускаться, он будет гудеть, греться, но работать не будет.
Виды конденсаторных двигателей
Схема подключения, при которой конденсаторный асинхронный двигатель запускается только от пускового конденсатора, имеет один существенный минус. Во время работы магнитное поле не остается круговым или эллиптическим, показатели работы падают, а электродвигатель греется. В таком случае для оптимального режима в цепь включается рабочий конденсатор, обеспечивающий постоянный сдвиг фаз, а не только в момент пуска.
Отметим, что можно выделить две группы конденсаторных двигателей:
- Конденсатор нужен только для пуска, тогда его называют пусковым. Обычно это маломощные приборы.
- Конденсатор нужен для постоянной работы, в этом случае его называют рабочим. В машинах большой мощности (несколько кВт) для пуска под нагрузкой может не хватать момента, и тогда подключают дополнительно еще один пусковой конденсатор. Чаще всего это делают с помощью кнопки ПНВС.
Подробнее со схемой подключения и тем как отличить эти типы однофазных двигателей вы можете ознакомиться в следующем видео ролике:
В международной классификации применяются обозначения для типов конденсаторных асинхронных двигателей:
- двигатель с пуском через конденсатор/работа через обмотку (индуктивность) (CSIR);
- двигатель с пуском через конденсатор/работа через конденсатор (CSCR);
- двигатель с постоянным разделением емкости (PSC).
Как работает такая схема представить несложно: пусковой конденсатор большой емкости обеспечивает пуск двигателя, а после набора мощности рабочий меньшей емкости обеспечивает максимально подходящий режим работы и скорости вращения ротора.
Для особых случаев, когда необходимо поддерживать необходимую скорость вращения ротора при разных нагрузках для рабочих конденсаторов, подбирают разные емкости с возможностью их переключения.
Чтобы изменить направление вращение, иначе говоря, включить реверс, нужно поменять местами концы одной из обмоток. Для этого удобно использовать 6 контактный тумблер.
Как подобрать емкость для пускового конденсатора
Сразу стоит сказать, что на шильдике двигателя обычно указывается ёмкость пускового и рабочего конденсатора (или только рабочего, если пусковой не нужен). При этом указываются точные данные характерные для конкретно этого электродвигателя с его особенностями устройства и работы.
Если шильдик затёрт или отсутствует, то рассчитать ёмкость рабочего и пускового конденсатора для однофазного можно скорее не по формуле, а по мнемоническому правилу:
Сумма рабочего и пускового конденсатора должна составлять 100 мкФ на 1 кВт мощности (70% пусковой и 30% рабочий). Если двигатель 1 кВт, то рабочий конденсатор нужен на 30 мкФ, а пусковой – на 70. А сами конденсаторы должны быть рассчитаны на напряжение больше чем в питающей сети. Обычно выбирают порядка 400 Вольт.
Но в литературе можно встретить и рекомендации о том, что, что ёмкость пускового конденсатора должна быть больше, чем емкость рабочего в 2 раза.
Сфера практического применения
Конденсаторные асинхронные электродвигатели используются в бытовых электровентиляторах, холодильниках, некоторых современных стиральных машинах, практически во всех стиральных машинах производства СССР. Но в вытяжках чаще применяются двигатели с расщепленными полюсами без конденсатора, тем не менее, можно встретить модели и с рассматриваемым типом электродвигателя.
Кроме бытовой техники их сфера применения распространяется и на насосы мощностью до 2-3 кВт, компрессоры и различные станки с однофазным питанием, в общем, на все, что должно вращаться и работать от 220 Вольт.
Вот мы и рассмотрели, что такое конденсаторный двигатель, как он устроен и для чего нужен. Надеемся, предоставленная информация помогла вам разобраться в вопросе!
Для чего нужен конденсатор в электродвигателе
Почему применяется запуск двигателя 220 В через конденсатор?
Для начала определимся с терминологией. Конденсатор (лат. condensatio — «накопление») – это электронный компонент, хранящий электрический заряд и состоящий из двух близкорасположенных проводников (обычно пластин), разделенных диэлектрическим материалом. Пластины накапливают электрический заряд от источника питания. Одна из них накапливает положительный заряд, а другая – отрицательный.
Метод подключения двигателя через конденсатор – этот способ применяют для достижения мягкого пуска агрегата. На статоре однофазного движка с короткозамкнутым ротором размещают дополнительно к основной электрообмотке ещё одну. Две обмотки соотнесены между собой на угол 90. Одна из них является рабочей, её предназначение заставить работать мотор от сети 220 В, другая – вспомогательная, нужна для запуска.
Рассмотрим схемы подключения конденсаторов:
- с выключателем,
- напрямую, без выключателя;
- параллельное включение двух электролитов.
Как подобрать конденсаторы для запуска электродвигателя
Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.
Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.
Электролит используют в том случае, если нужно восстановить слой оксидной пленки. Для правильной работы аппарата нужно чтоб система была подключена к сети с переменным током в 220 В и имела четко выраженную полярность.
То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.
Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток — его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.
Всего существует 3 основных вида конденсаторов:
Выбираем конденсаторы
Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:
С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.
Формула для треугольника:
Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:
С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя. Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В
И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость. И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины
Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.
Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение
Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.
Как рассчитать емкость
Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.
Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.
Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:
I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.
Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:
C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.
Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.
- Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
- Низкая мощность двигателя, значит, емкость занижена.
Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).
Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя
Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов
В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
- Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
подключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)
К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Схемы подключения
Варианты подключения двигателя через конденсатор:
- схема подключения однофазного двигателя с использованием пускового конденсатора;
- подключение электродвигателя с использованием конденсатора в рабочем режиме;
- подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.
Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.
Схема с пусковым конденсатором
Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.
Схема подключения пускового конденсатора
Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.
Соединения, центробежный выключатель на валу ротора
Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.
Некоторые элементы
Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.
Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.
Варианты схемы подключения конденсаторов
В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.
Схема с рабочим конденсатором
Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.
Комбинированная схема с двумя конденсаторами
Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.
Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно
Схема подключения электродвигателя 380 на 220 вольт с конденсатором
Есть еще один вариант подключения электродвигателя мощность в 380 Вольт, который приходит в движение без нагрузки. Для этого также необходим конденсатор в рабочем состоянии.
Один конец подключается к нулю, а второй — к выходу треугольника с порядковым номером три. Чтобы изменить направление вращения электромотора, стоит подключить его к фазе, а не к нулю.
Схема подключения электродвигателя 220 вольт через конденсаторы
В случае когда мощность двигателя более 1,5 Киловатта или он при старте работает сразу с нагрузкой, вместе с рабочим конденсатором необходимо параллельно установить и пусковой. Он служит увеличению пускового момента и включается всего на несколько секунд во время старта. Для удобства он подключается с кнопкой, а все устройство — от электропитания через тумблер или кнопку с двумя позициями, которая имеет два фиксированных положения. Для того чтобы запустить такой электромотор, необходимо все подключить через кнопку (тумблер) и держать кнопку старта, пока он не запустится. Когда запустился – просто отпускаем кнопку и пружина размыкает контакты, отключая стартер
Специфика заключается в том, что асинхронные двигатели изначально предназначаются для подключения к сети с тремя фазами в 380 В или 220 В.
Р = 1,73 * 220 В * 2,0 * 0,67 = 510 (Вт) расчет для 220 В
Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) расчет для 380 В
По формуле становится понятно, что электрическая мощность превосходит механическую. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля.
Существуют два типа обмотки — звездой и треугольником. По информации на бирке мотора можно определить какая система в нем использована.
Схема подключения электродвигателя на 220В через конденсатор
Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.
Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.
Что при этом получается?
- Скорость вращения не изменяется.
- Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.
Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.
Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду
С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.
И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.
Схема подключения однофазного двигателя через конденсатор
Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.
По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.
Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.
Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.
Статья по теме: Виды электромонтажных работ по смете
Заключение
В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.
После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.
Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.
Принцип работы двигателя
Чтобы понять, как работают электродвигатели асинхронные трехфазные, необходимо провести один несложный эксперимент. Для этого вам понадобиться обычный магнит подковообразного типа и медный стержень. При этом магнит надо хорошо закрепить к рукоятке, с помощью которой его можно крутить на одном месте вокруг своей оси. Медный стержень закрепляется в подшипниках и устанавливается в пространство между концами (полюсами) магнита-подковы. То есть, стержень оказывается как бы внутри магнита, а, точнее сказать, внутри его плоскости вращении.
Принцип работы трехфазного асинхронного двигателя
Теперь надо просто вращать магнитное устройство за ручку. Лучше по часовой стрелке. Так как между полюсами есть магнитное поле, то оно также будет вращаться. При этом поле будет пересекать или рассекать своими силовыми линиями медный стержень-цилиндр. И тут включается закон электромагнитной индукции. То есть, внутри медного стержня начнут возникать вихревые токи. Они, в свою очередь, начнут образовывать свое собственное магнитное поле, которое будет взаимодействовать с основным магнитным полем.
При этом стержень начнет вращаться в ту же сторону, что и магнит. И вот тут возникает один момент, который также лежит в принципе работы электродвигателя. О нем было уже упомянуто. Если скорость вращения стержня будет такое же, как у магнита, то их силовые линии пересекаться не будут. То есть, вращения не будет в виду отсутствия вихревых токов.
И еще пару нюансов:
- Магнитное поле вращается с той же скоростью, что и сам магнит, поэтому скорость называют синхронной.
- А вот стержень вращается с меньшей скоростью, поэтому ее и называют асинхронной. Отсюда, в принципе, название и самого электрического мотора.
Кстати, определить величину скольжения несложно, для этого необходимо воспользоваться формулой: