Виды автомобильных высоковольтных проводов
При выборе автомобильных высоковольтных проводов зажигания рекомендуем принимать в расчет материал изоляции и тип токопроводящей жилы.
Тип токопроводящей жилы
В зависимости от типа токопроводящей жилы высоковольтные провода делятся на три группы:
Кабели с медным проводником. Этот вид автомобильных высоковольтных проводов зажигания является традиционным и наиболее простым по устройству. Представляет собой несущий проводник из многожильного медного провода (2), покрытый слоем изоляции (1).
Сопротивление такого провода – минимальное, порядка 0,2 Ом/м, а уровень создаваемых им во время работы помех – значительный. По этой причине провода с медным проводником обязательно комплектуются помехоподавляющими резисторами.
vybrat-vysokovoltnyje-provoda02В) Провода с неметаллической токопроводящей жилой с низким распределенным сопротивлением состоят из сердечника (3), изготовленного из льняной нити, кевлара или стекловолокна, пропитанного графитом. Сердечник заключен в защитную оболочку (4) из металлонаполненной электропроводящей пластмассы (ферропласта), поверх которой нанесена обвивка (5) из металлической проволоки.
Из-за того, что провода такого типа имеют невысокое распределенное сопротивление около 2 кОм/м, они нуждаются в установке помехоподавляющих устройств.
vybrat-vysokovoltnyje-provoda03С) Провода с неметаллическим токопроводящим сердечником с высоким (до 40 кОм/м) распределенным сопротивлением не нуждаются в установке резисторов.
Их токопроводящую жилу (6) изготавливают из полимеров, пропитанной сажевым раствором хлопчатобумажной пряжи или стекловолоконных нитей с графитовой обсыпкой. В большинстве случаев токопроводящий сердечник заключают в упрочняющую неметаллическую оплетку, которую покрывают слоем изоляции (1).
В качестве недорогого материала для изоляции высоковольтных проводов часто используют полихлорвинил или термопластичный полимер винилхлорида – поливинилхлорид. Он расчитан на работу в диапазоне температур от -20 до +1200 С.
Более надежную работу проводов способна обеспечить их изоляция из эластомера, изготовленного на основе диенового мономера, пропилена и сополимера этилена. Помимо хороших диэлектрических свойств, он имеет высокую сопротивляемость к воздействию агрессивных жидкостей, износоустойчив и способен работать при температурах от -30 до +1800 С.
Самый дорогой изоляционный материал для высоковольтных проводов – силикон. Высокая сопротивляемость к перепадам температур (от -50 до +2500 С), превосходные изоляционные характеристики и неограниченный срок службы сделали этот неорганический полимер незаменимым материалом при производстве изоляционных материалов.
Изоляция автомобильных высоковольтных проводов зажигания может быть как однослойной, так и многослойной.
Выбирая высоковольтные провода, рекомендуем отдавать предпочтение моделям с большим диаметром сечения сердечника на основе токопроводящего силикона. Они не нуждаются в установке дополнительных помехоподавляющих резисторов, а их показатели прохождения тока при высоком распределенном сопротивлении – наилучшие.
Удачного вам выбора! Пусть система зажигания вашего автомобиля работает ровно, стабильно и безотказно!
Провода и тросы воздушных линий электропередачи
На воздушных линиях электропередачи напряжением выше 1000 В применяют голые провода и тросы. Находясь на открытом воздухе, они подвергаются воздействиям атмосферы (ветер, гололед, изменение температуры) и вредных примесей окружающего воздуха (сернистые газы химических заводов, морская соль) и поэтому должны обладать достаточной механической прочностью и быть устойчивыми против коррозии (ржавления).
В настоящее время на ВЛ наибольшее применение нашли сталеалюминиевые провода.
Раньше на воздушных линиях применялись медные провода, а теперь используют алюминиевые, сталеалюминевые и стальные, а в отдельных случаях и провода из специальных сплавов алюминия – альдрея и др. Грозозащитные тросы выполняются, как правило, из стали.
По конструкции различают:
а) многопроволочные провода из одного металла, состоящие (в зависимости от сечения провода) из 7; 19 и 37 скрученных между собой отдельных проволок (рис. 1, б);
б) однопроволочные провода, состоящие из одной проволоки сплошного сечения (рис. 1, а);
в) многопроволочные провода из двух металлов – стали и алюминия или стали и бронзы. Сталеалюминевые провода обычной конструкции (марки АС) состоят из стальной оцинкованной жилы (однопроволочной или скрученной из 7 или 19 проволок), вокруг которой расположена алюминиевая часть, состоящая из 6, 24 или более проволок (рис. 1, в).
Рис. 1. Конструкция проводов воздушных линий: а – однопроволочные провода; б – многопроволочные провода; в – сталеалюминевые провода.
Конструктивные расчетные данные голых алюминиевых и сталеалюминевых проводов находятся в ГОСТ 839-80.
Выбор проводов ВЛ предусматривает учет нескольких факторов, среди которых одним из наиболее существенных является длительный нагрев электрическим током. Нагрев проводов ограничивает пропускную способность ВЛ, приводит к коррозии проводов, потере ими механической прочности, росту стрелы провеса и т. д. Температура проводов зависит от токовой нагрузки и метеорологических условий трассы ВЛ.
На нагрузочную способность проводов значительное влияние оказывают погодные условия — скорость ветра, температура окружающего воздуха и солнечная радиация, которые в течение года изменяются в достаточно широких пределах.
Высказывается мнение, что изменение скорости ветра оказывает большее влияние, чем изменение температуры воздуха. Слабый ветер со скоростью 0,6 м/с повышает пропускную способность проводов на 140% по сравнению с условиями неподвижного воздуха, в то время как повышение температуры окружающей среды на 10°С снижает ее на 10 — 15%.
Меые провода, изготовленные из твердотянутой медной проволоки, обладают малым удельным сопротивлением (r = 18,0 Ом х мм 2 /км) и хорошей механической прочностью: предельное сопротивление разрыву sп = 36 … 40 кгс/мм 2 , успешно противостоят атмосферным воздействиям и коррозии от вредных примесей в воздухе.
Медные провода маркируют буквой М с прибавлением номинимального сечения провода. Так, медный провод с номинальным сечением 50 мм 2 обозначается М – 50.
Медь в настоящее время является дефицитным дорогостоящим материалом, поэтому в качестве проводов воздушных линий электропередачи практически не используется. В целях экономии меди медные, бронзовые и сталебронзовые провода сняты с производства еще в 60-х годах прошлого века.
Алюминиевые провода отличаются от медных значительно меньшей массой, несколько большим удельным сопротивлением (r = 28,7…28,8 Ом х мм 2 /км) и меньшей механической прочностью: sп = 15,6 кгс/мм 2 — для проводов из проволок марки АТ и sп = 16 …18 кгс/мм 2 из проволки Атп.
Алюминиевые провода применяют главным образом в местных сетях. Малая механическая прочность этих проводов не допускает большого тяжения. Чтобы избежать больших стрел провеса и обеспечить требуемый ПУЭ минимальный габарит линии до земли, приходится уменьшить расстояние между опорами, а это удорожает линию.
Для повышения механической прочности алюминиевых проводов их изготовляют многопроволочными, из твердотянутых проволок. Хорошо перенося атмосферные воздействия, алюминиевые провода плохо противостоят воздействию вредных примесей воздуха.
Поэтому для воздушных линий, сооружаемых вблизи морских побережий, соленых озер и химических предприятий, рекомендуются алюминиевые провода марки АКП, защищенные от коррозии (алюминиевые коррозионно-стойкие, с заполнением межпроволочного пространства нейтральной смазкой). Провода из алюминия маркируются буквой А с добавлением номинального сечения провода.
Стальные провода обладают большой механической прочностью: предельное сопротивление при разрыве sп = 55 …70 кгс/мм 2 . Стальные провода бывают как однопроволочными, так и многопроволочными.
Удельное электрическое сопротивление стальных проводов значительно выше, чем алюминиевых, и в сетях переменного тока оно зависит от величины тока, протекающего по проводу. Стальные провода применяют в местных сетях напряжением до 10 кВ при передаче сравнительно небольших мощностей, когда сооружение линий с алюминиевыми проводами менее выгодно.
Существенный недостаток стальных проводов и тросов – подверженность коррозии. Для уменьшения коррозии провода оцинковывают. Выпускаются две марки многопроволочных стальных проводов: ПС (провод стальной) и ПМС (провод омедненный стальной). Провода ПС имеют присадку меди до 0,2%, а провода марки ПСО изготовляются диаметром 3; 3,5; 5 мм. Стальные многопроволочные грозозащитные тросы выпускаются марок С-35, С-50 и С-70.
Сталеалюминевые провода имеют то же удельное сопротивление, что и алюминиевые провода равного им сечения, так как в электрических расчетах сталеалюминевых проводов проводимость стальной части не учитывается ввиду ее незначительности по сравнению с проводимостью алюминиевой части проводов.
Конструктивно стальные проволки составляют внутреннюю часть сталеалюминевого провода, а алюминиевые проволки – внешнюю. Сталь предназначена для увеличения механической прочности, алюминий является токопроводящей частью.
В сталеалюминиевых проводах возникают дополнительные внутренние напряжения в алюминиевой части провода, вследствие различных коэффициентов температурного расширения алюминия и стали.
Обязательное ограничение напряжения в проводе при среднегодовой температуре для всех проводов необходимо для предотвращения быстрого износа проводов от усталости вследствие вибрации.
Экспериментально установлено, что алюминий начинает терять свои прочностные качества при температурах свыше 65°С. С учетом этого при выборе максимальной рабочей температуры сталеалюминиевых проводов рекомендуется планировать уменьшение прочности алюминия на 12 — 15% (что составляет 7 — 8% потери прочности провода в целом) в течение всего срока их службы, что примерно соответствует непрерывной в течение 50 лет эксплуатации провода при температуре 90°С. Следует отметить, что суммарная потеря механической прочности вследствие кратковременных аварийных перегрузок проводов не превышает 1%.
Выпускаются следующие марки сталеалюминевых проводов (ГОСТ 839-80):
АС – провод, состоящий из сердечника – стальных оцинкованных проволок, и одного или нескольких наружных повивов из алюминиевых проволок. Провод предназначается для прокладки на суше, кроме районов с загрязненным вредными химическими соединениями воздухом;
АСКС, АСКП – как и провод марки АС, но с заполнением стального сердечника (С) или всего провода (П) смазкой, противодействующей появлению коррозии проволок. Предназначен для прокладки на побережье морей, соленых озер и в промышленных районах с загрязненным воздухом;
АСК – такой же как и провод АСКС, но со стальным сердечником, изолированным полиэтиленовой пленкой. В маркировке провода после буквы А может стоять буква П, которая указывает, что провод повышенной механической прочности (например АпСК).
Сталеалюминевые провода всех марок выпускаются с разным отношением сечения алюминиевой части провода к сечению стального сердечника: в пределах 6,0…6,16 – для работы провода в средних по механической нагрузке условиях; 4,29…4,39 – усиленной прочности; 0,65…1,46 – особо усиленной прочности: 7,71…8,03 – облегченной конструкции и 12,22…18,09 – особо облегченные.
Провода облегченной конструкции применяют на вновь сооружаемых и реконструируемых линиях в районах, где толщина стенки гололеда не превышает 20 мм. Сталеалюминевые провода усиленной прочности рекомендуется применять в районах с толщиной стенки гололеда более 20 мм. Для осуществления больших пролетов на переходах через водные пространства и инженерные сооружения применяют провода особой прочности.
Для более полной характеристики сталеалюминевых проводов в обозначение марки проводов вводится номинальное сечение провода и сечение стального сердечника, например: АС – 150/24 или АСКС – 150/34.
Провода из альдрея
Провода из альдрея обладают примерно тем же электрическим сопротивлением, что и алюминиевые, но имеют большую механическую прочность. Альдрей представляет собой сплав алюминия с незначительными количествами железа (» 0,2 %), магния (» 0,7 %) и кремния (» 0,8 %); по корроизной стойкости он равен алюминию. Недостаток проводов из альдрея – их малая стойкость при вибрации.
Расположение проводов на воздушной линии
Провода на опорах воздушных линий можно располагать различными способами: на одноцепных линиях – треугольником или горизонтально; на двухцепных линиях – обратной елкой или шестиугольником (в виде «бочки»).
Расположение проводов треугольником (рис. 2 , а) применяется на линиях напряжением до 20 кВ включительно и на линиях напряжением 35…330 кВ с металлическими и железобетонными опорами.
Горизонтальное расположение проводов (рис. 2 , б) применятся на линиях напряжением 35…220 кВ с деревянными опорами. Такое расположение проводов является наилучшим по условиям эксплуатации, так как позволяет применять более низкие опоры и исключает схлестывание проводов при сбрасывании гололеда и пляске проводов.
На двухценных линиях провода располагают либо обратной елкой (рис. 2 , в), что удобно по условиям монтажа, но увеличивает массу опор и требует подвески двух защитных тросов, либо шестиугольником (рис. 2 , г).
Последний способ предпочтительнее. Он рекомендован к применению на двухценных линиях напряжением 35…330 кВ.
Для всех перечисленных вариантов характерно несимметричное расположение проводов по отношению друг к другу, что приводит к различию электрических параметров фаз. Для уравнения этих параметров применяют транспозицию проводов, т.е. последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу на различных участках линии. При этом провод каждой фазы проходит одну треть длины линии на одном, вторую – на другом и третью – на третьем месте (рис. 3 .).
Рис. 2. Расположение проводов и защитных тросов на опорах: а – треугольником; б – горизонтальное; в – обратной елкой; г – шестиугольником (бочкой).
Рис. 3 . Схема транспозиции проводов одноцепной линии.
Расчет механической части ВЛ выполняют, исходя из повторяемости скорости ветpa и толщины стенки гололеда на проводах, отвечающей требованиям надежности и капитальности того или иного класса ВЛ.
ВЛ разных классов при их прохождении по одной и той же местности, в частности по общей трассе, должны быть рассчитаны на разные ветровые и гололедные нагрузки.
Грозозащитные тросы воздушных линий электропередачи
Грозозащитные тросы подвешивают выше проводов для защиты их от атмосферных перенапряжений. На линиях напряжением ниже 220 кВ тросы подвешивают только на подходах к подстанциям. При этом снижается вероятность перекрытия проводов линии вблизи подстанции. На линиях напряжением 220 кВ и выше тросы подвешиваются вдоль всей линии. Обычно используются тросы из стальных проволок.
Ранее тросы на линиях всех номинальных напряжений заземлялись наглухо на каждой опоре. Опыт эксплуатации показал, что в замкнутых контурах заземляющей системы – тросы – опоры появились токи. Они возникли вследствие действия ЭДС, наводимых в тросах путем электромагнитной индукции. При этом в ряде случаев в многократно заземленных тросах получились значительные потери электроэнергии, особенно в линиях сверхвысоких напряжений.
Исследования показали, что при подвеске тросов повышенной проводимости (сталеалюминиевых) на изоляторах тросы могут быть использованы в качестве проводов связи и в качестве токонесущих проводов для электроснабжения потребителей малой мощности.
Для обеспечения соответствующего уровня грозозащиты линий тросы при этом должны присоединяться к заземленным через искровые промежутки.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
9.6. Провода для воздушных линий электропередачи
Для воздушных линий электропередачи на напряжение 35—1150 кВ применяются неизолированные алюминиевые и сталеалюминевые провода. Основные конструкции этих проводов показаны на рисунке 9.10. Алюминиевые и сталеалюминевые провода являются многопроволочными, причём алюминиевые проволоки определяют электрические характеристики провода, а стальной сердечник обеспечивает механические характеристики. Многопроволочный сердечник состоит из стальных оцинкованных проволок и покрывается слоем нейтральной смазки.
Рис. 9.10 Конструкции упрочнённых сталеалюминевых проводов для ЛЭП:
Ка– отношение сечений алюминия и стали: 1 – стальной сердечник; 2 – алюминиевый сердечник
Чем больше наружный диаметр провода, тем выше потери на коронный разряд. Поэтому для напряжений, превышающих 220 кВ, приходится выбирать провода большего сечения по сравнению с оптимальным, что несколько ухудшает экономические показатели ЛЭП. Для уменьшения потерь при передаче электроэнергии в ЛЭП обычно используется расщепление фаз, которое не связано с изменением конструкции проводов.
При воздействии агрессивной атмосферы или атмосферы с повышенной влажностью возможна интенсивная коррозия алюминиевых и сталеалюминевых проводов, что приводит к выходу из строя ЛЭП за 4—8 лет. Поэтому для повышения срока службы проводов в таких условиях эксплуатации на поверхность стального сердечника и по повивам алюминиевой проволоки наносится специальная защитная смазка, обычно на основе углеродных материалов. Кроме алюминиевых и сталеалюминевых проводов в ЛЭП используются также провода из сплавов алюминия, которые при достаточно высокой электрической проводимости имеют высокие механические характеристики, позволяющие в ряде сплавов отказаться от применения стального сердечника и уменьшить массу проводов.
Алюминиевые сплавы на основе Al-Mg-Si достаточно широко применяются за рубежом для изготовления проводов для воздушных ЛЭП. Химический состав сплавов и их свойства в стандартах разных стран различаются незначительно. За базовые сплавы принимаются обычно сплавы по стандарту США, имеющие цифровое обозначение 6101 и 6201. В отечественной практике используются провода из упрочнённого сплава сечением до 185 мм 2 двух модификаций: провода из нетермообработанного сплава с пониженным уровнем прочностных характеристик и провода из термообработанного сплава, разрывная прочность и электрическое сопротивление которых соответствуют требованиям стандарта Международной электротехнической комиссии. Однако применение их в отечественной практике ограничено. В то же время сравнение характеристик сталеалюминевых проводов и проводов из алюминиевого сплава свидетельствует в пользу последних. Так, если сравнивать сталеалюминевые провода с номинальным сечением по алюминию 525 мм 2 и заменяющего его аналога — провода из упрочнённого алюминиевого сплава сечением 585 мм 2 , то провод из сплава алюминия имеет массу на 20 % меньше, разрывное усиление на 18 % выше и электрическое сопротивление на 5 % ниже. При этом экономическая эффективность достигается за счёт увеличения длины пролётов и уменьшения количества опор на ЛЭП.
Рис.9.11 Конструкция самонесущего изолированного провода для ЛЭП напряжением до 1 кВ:
1 – токопроводящая жила из алюминиевой проволоки; 2 – изоляция из сшитого полиэтилена; 3 – изолированный провод освещения; 4 – нулевая несущая жила; из сплава алюминия
Самонесущие изолированные провода (СИП) применяются для воздушных распределительных сетей низкого и среднего напряжения взамен неизолированных алюминиевых и сталеалюминевых проводов. Базовая конструкция провода на низкое напряжение: пучок скрученных изолированных светостабилизированным сшитым ПЭ фазных проводников с несущим нулевым проводом и проводом меньшего сечения для уличного освещения (рис. 10.11). Несущий нулевой провод выполняется из алюминиевого сплава на базе Al-Mg-Si с разрывной прочностью на единицу сечения не менее 295 МПа (для сравнения — разрывная прочность алюминия около 165 МПа). Провод подвешивается на опорах ЛЭП. СИП на напряжения 10—20 кВ имеет токопроводящую жилу из алюминиевого сплава и изоляцию из светостабилизированного сшитого ПЭ.
Эксплуатационные преимущества изолированных самонесущих проводов по сравнению с неизолированными:
повышенная надёжность в эксплуатации за счёт значительно меньшей вероятности короткого замыкания (проводники фаз изолированы);
стойкость к атмосферным воздействиям (гололёд, ветровые нагрузки);
снижение индуктивного сопротивления в 3,5 раза, что позволяет сократить потери электроэнергии и увеличивает токи нагрузки;
защита зелёных насаждений (не требуется вырубки деревьев и кустарников по трассе прокладки).
Высоковольтный кабель – виды и характеристики, особенности использования
Исходя из названия кабеля, можно понять, что используют его в целях передачи электричества с высоким показателем мощности. Такие изделия готовы работать с напряжением более 6 тысяч вольт. Эксплуатация проходит исходя из конструктивных особенностей кабеля.
Виды и характеристики
В проводниково-кабельном сегменте высоковольтные разновидности отличаются тем, что они предназначены для работы с высоким рабочим напряжением. В зависимости от его показателя, продукция делится на виды.
При этом все они объединены тремя признаками:
- у них повышенная теплостойкость.
- кабели – отличные диэлектрики.
- могут работать в температурных границах -50°С…+60°С. Если сложилась ситуация с коротким замыканием, то на пике температура может достигать +250°С.
Изоляцию в основном делают из полиэтилена. Однако бывают варианты и бумажно-масляные. Жилы выполнены из алюминия либо меди. Галогена в составе кабелей нет. Отличаются малым уровнем горючести. Рассмотрим основные виды высоковольтных кабелей
Данный тип кабеля имеет токопроводящую жилу из алюминия. Из него же сделана и оболочка. Изделие имеет защитный покров. Представляет он собой шланг, созданный из ПВХ пластиката. Отличается покров пониженной горючестью. Дымовыделение и газовыделение слабое.
Подходит для работы в регионах с холодным либо умеренным климатом. Применяют их для прокладки в грунте (траншеях), чья коррозионная активность средняя или низкая. Если же показатель высокий, то для эксплуатации важно отсутствие блуждающих токов. Есть и иные вариации применения. Например, внутри сырых и влажных помещений, на открытом воздухе и др.
У этого кабеля жилы сделаны из алюминиевой проволоки. Оболочка и изоляция выполнены из пластиката ПВХ. Защитный покров отсутствует, зато есть трос из стальной проволоки. АВВГ-Т кабель работает в холодном, тропическом или умеренном климате. Подходят для работы на озерах, суше и даже высоте не более 4,3 тыс. м над уровнем моря. Если использовать в одиночной прокладке, то кабель не будет поддерживать горение.
У этого кабеля 4 жилы. В конструкции есть экран, представляющий собой оплетку. Состоит она из медной проволоки. Данный тип кабеля используют для питания приборов электронно-лучевого типа. Например:
- рентгеновской аппаратуры;
- микроскопов (электронных);
- электронографов.
Предназначен для рабочего напряжения 110 кВ. Рабочая температура -20°С…+60°С.
У данного вида кабеля токопроводящие жилы сделаны из алюминия. В отличие от других разновидностей, изоляционный слой выполнен из резины этиленпропиленовой. Медная проволока составляет специальный экран. У кабеля есть броня. Она сделана из оцинкованной стальной проволоки. Оболочка изделия изготовлена из пластиката ПВХ пониженного класса пожароопасности.
Используют кабели данного вида в целях передачи и последующего распределения электроэнергии в электросетях на номинальное переменное напряжение 20, 6, 15, 35 и 10 кВ частотой 50 Гц. Эксплуатируют вне объектов и внутри их. Подходит для работы во влажных условиях, в кладках из камня, каналах либо трубах. Пригоден даже в проводке открытого типа и конструкциях из металла.
Где используют, особенности
Используют кабели в уличных системах освещения. Но есть и узкие сферы применения. Например, в турбореактивных двигателях. В них есть высоковольтные провода зажигания. Не обходятся без таких проводов радиолокационные установки. В них провода нужны с целью передачи сигнала в беспрерывном или повторно-кратковременном цикле работы. Также подходят они для передачи к устройствам нагрузки электрической энергии, транспортируемой от накопителей.