Что такое нормальное детонационное и калильное сгорание
Перейти к содержимому

Что такое нормальное детонационное и калильное сгорание

  • автор:

Что такое нормальное детонационное и калильное сгорание

Тема 2

Автомобильные бензины, свойства и показатели, влияющие на смесеобразование и подачу

Требования к качеству бензинов

Автомобильным бензином называют нефтяную фракцию, представляющую смесь углеводородов, которая выкипает при температурах от 40 до 200 °С.

К бензинам предъявляются следующие требования:

— обеспечение нормального и полного сгорания полученной смеси в двигателях (без возникновения детонации);

— образование горючей смеси необходимого состава;

— обеспечение бесперебойной подачи в систему питания;

— отсутствие коррозионного воздействия на детали двигателя;

— незначительное образование отложений в двигателе;

— сохранение качеств при хранении и транспортировке.

Каждое из перечисленных требований выражается одним или несколькими показателями, которые устанавливаются соответствующими ГОСТами.

Основными показателями качества бензинов являются детона­ционная стойкость, фракционный состав, давление насыщенных паров и химическая стабильность.

Рассмотрим систему питания карбюраторного двигателя, обес­печивающую образование топливовоздушной смеси определенно­го состава, схема которой представлена на рис 1.
Рис. 1 Схема питания карбюраторного двигателя:

1 — топливный бак; 2 — фильтр-отстойник; 3 — диафрагменный насос; 4 —по­плавковая камера карбюратора; 5 — жиклер; 6 — воздухоочиститель; 7 — смеси­тельная камера карбюратора; 8 — впускной трубопровод; 9 — впускной клапан; 10 — свеча зажигания; 11 — камера сгорания; 12 — выпускной клапан; 13 — рабочий цилиндр; 14 — выпускной трубопровод; 15 — выхлопная труба с глушителем и искрогасителем

Топливо заливают в бак 7 через горловину с сетчатым фильтром. Диафрагменный насос 3 подает топливо в фильтр-отстойник 2, где оно очищается от механических примесей и воды, а затем в по­плавковую камеру карбюратора 4.

Карбюратор предназначен для приготовления горючей смеси определенного состава, соответствующего режиму работы двига­теля. В такте всасывания топлива в смесительной камере 7 карбю­ратора создается разрежение и туда поступает воздух, предвари­тельно прошедший очистку в воздухоочистителе 6. Поток посту­пившего воздуха и захваченное им из жиклера 5 топливо переме­шиваются во впускном трубопроводе 8, образуя горючую смесь, которая через открывшийся в определенный момент впускной клапан 9 поступает в камеру сгорания 11. Здесь горючая смесь сме­шивается с небольшими остатками продуктов сгорания, в резуль­тате чего образуется рабочая смесь.

В такте сжатия давление и температура рабочей смеси в камере сгорания возрастают, и после воспламенения ее искрой свечи за­жигания 10 начинается такт рабочего хода поршня цилиндра, т. е. происходит преобразование тепловой энергии в механическую.

В последнем такте работы двигателя отработавшие газы из ка­меры сгорания выбрасываются в атмосферу через открывшийся выпускной клапан 12, выпускной трубопровод 14 и выхлопную трубу с глушителем и искрогасителем 15.

В карбюраторных двигателях процесс дозировки топлива, произ­водимый калиброванными отверстиями жиклеров, и его уровень в поплавковой камере зависят от плотности и вязкости бензина.

Свойства и показатели бензинов, влияющие на смесеобразование

Показателями бензинов, влияющими на смесеобразование, являются плотность, вязкость, поверхностное натяжение и испаряемость.

Плотность — отношение массы вещества к его объему. Плотность бензинов (от 690 до 810 кг/м 3 при температуре 20 °С) наряду с поверхностным натяжением оказывает влияние на качество распыления топлива в карбюраторе, во впускном трубопроводе и цилиндрах двигателя вплоть до перехода его в парообразное состояние. Чем меньше плотность бензина, тем более мелкую структуру будет иметь распыленное топливо, что обеспечит лучшее перемешивание его с воздухом. Это, в свою очередь, улучшит полноту сгорания, т. е. повысит экономичность двигателя. Плотность бензина мало зависит от температуры; с понижением температуры на каждые 10 °С ее величина возрастает примерно на 1 %. Если значение плотности определено без учета температуры, то ее можно привести к значению плотности при температуре 20 ° С по формуле

ρ 20 = ρ t + γ t — 20

где ρt, — плотность бензина при температуре t;

γ — температурная поправка;

t — температура при измерении.

Плотность различных марок бензина примерно одинакова и определяется с помощью ареометра (рис. 2 ). Методы определения плотности нефтепродкутов определяет ГОСТ 3900—85. Ареометр погружают в стеклянный сосуд, заполненный бензином. По глубине погружения (верхняя шкала) определяют значение плотности, а по нижней шкале устанавливают температуру, при которой определялась плотность.

Рис. 2 Измерение плотности бензина

Вязкость — свойство жидкости оказывать сопротивление перемещению одной части относительно другой. Различают динамическую η и кинематическую v вязкости. За единицу динамической вязкости принята вязкость такой жидкости, которая оказывает сопротивление силой в 1Н, вызванным взаимным сдвигом двух слоев этой жидкости площадью 1м 2 , находящихся на расстоянии 1 м друг от друга и перемещающихся со скоростью 1м/с. Динамическая вязкость измеряется в Па * с.

С понижением температуры вязкость нефтяных топлив и их плотность повышаются. При понижении температуры уменьшится объемный расход бензина через жиклеры карбюратора, но при этом увеличится его массовый расход. Таким образом, влияние изменения вязкости и плотности бензина на работу жиклера противоположно, но в итоге при понижении температуры расход топлива через жиклеры уменьшится, что приведет к обеднению смеси.

В ГОСТах на нефтепродукты указывается кинематическая вязкость, которая равна отношению динамической вязкости вещества к его плотности ρ

Кинематическая вязкость измеряется в мм 2 /с. При температуре 20 °С вязкость бензина составляет от 0,5—0,7 мм 2 /с. С понижением температуры вязкость бензина повышается.

Поверхностное натяжение равно работе образования единицы площади (1м 2 ) поверхности жидкости при постоянной температуре и измеряется в Н/м. Для всех бензинов поверхностное натяжение одинаково и при температуре 20 °С равно 20—24 Н/м.

Испаряемость — это способность вещества к переходу из жидкого состояния в газообразное. От испаряемости зависит надежность поступления бензина из топливного бака в карбюратор и скорость образования топливно-воздушной смеси. Поэтому бензины должны обладать определенной испаряемостью, обеспечивающей легкий пуск двигателя, быстрый его прогрев, полное сгорание после прогрева, невозможность образования паровых пробок в топливной системе. Испаряемость бензина оценивается фракционным составом.

Фракционный состав бензинов — это содержание в них тех или иных фракций, выраженное в объемных или массовых соотношениях.

Фракционный состав топлив определяют на специальном приборе. Отмечают температуру начала перегонки tНП, конца перегонки tКП, температуры t10, t50, t90, при которых перегоняется 10, 50 и 90 % бензина соответственно. На рис. 3 представлен график перегонки бензина, отражающий его фракционный состав, т. е. количество (q) перегоняемого топлива (в процентах) в зависимости от температуры перегонки (t).

В бензинах различают три основные фракции: пусковую, рабочую, концевую. Пусковая фракция представляет собой первые 10 % перегонки бензина. Чем ниже температура выкипания первых 10 % топлива, тем легче будет осуществлен пуск холодного двигателя. Однако при содержании особо низких фракций возникает опасность преждевременного испарения бензина и образование паровых пробок. По температуре t10 можно определить минимальную температуру окружающей среды, при которой возможен пуск двигателя:

Температура выкипания 50 % бензина характеризует однородность состава смеси по отдельным цилиндрам, продолжительность и приемистость прогрева двигателя.

При снижении t50 сокращается время прогрева, увеличивается приемистость автомобиля и срок службы двигателя. Повышение t50 приводит к снижению ресурса двигателя, особенно при низких температурах окружающей среды.

Показатели t90 и tКП определяют содержание в бензинах тяжелых трудноиспаряемых фракций. Чем выше t90 и tКП, тем вероятнее неполное испарение бензина и неполное его сгорание в цилиндрах, а это увеличивает расход бензина. Кроме того, несгоревшие частицы оседают на стенках цилиндра и смывают с них масло.

Давление насыщенных паров бензина характеризует испаряемость пусковой и рабочей фракций бензина, определяет его пусковые свойства и нормируется ГОСТом: для летних бензинов — до 67,0 кПа, зимних — 66,7—93,3 кПа.

Рис. 3. График перегонки бензина

Фракционный состав оказывает большое влияние и на полноту сгорания бензина: с увеличением в нем высококипящих фракций полнота сгорания заметно снижается.

При пуске холодного двигателя испаряемость бензина ухудша­ется из-за низкой температуры и плохого распыливания его при малых скоростях воздуха в диффузоре, поэтому в цилиндры при температуре 0°С попадает в испарившемся виде лишь около 10 % бензина; при более высокой температуре его количество несколь­ко возрастает, а при минусовой температуре — резко падает.

При высокой температуре перегонки 10 % бензина затрудняет­ся пуск холодного двигателя вследствие того, что рабочая смесь в этом случае будет слишком обедненной, так как основное количе­ство бензина попадает в цилиндры в жидком виде. Кроме того, бензин в жидком виде разжижает масло, смывает его со стенок цилиндров и вызывает повышенный износ деталей двигателя.

Однако если бензин имеет слишком низкие температуры нача­ла перегонки и перегонки 10 %, то при горячем двигателе в жар­кое время года в системе питания могут испаряться наиболее низко­кипящие углеводороды, образуя пары, объем которых в 150. 200 раз больше объема бензина. При этом горючая смесь обедняется, что вызывает перебои в работе или остановку двигателя, а также зат­рудняет пуск прогретого двигателя. Это явление внешне проявля­ется так же, как и засорение топливной системы, поэтому оно и получило название «паровая пробка».

Для характеристики фракционного состава в стандарте указы­ваются температуры, при которых перегоняется 10, 50 и 90 % бен­зина, а также температуры начала и конца его перегонки. Кроме того, ограничивается количество бензина, которое не перегоняет­ся (остаток в колбе), и количество бензина, которое улетучивает­ся в процессе перегонки.

Связь между фракционным составом бензина и работой двига­теля можно определить с помощью номограммы, приведенной на рис. 4 .

Рис. 4 . Номограмма для эксплуатационной оценки бензинов по данным их разгонки:
1 — область возможного образования паровых пробок; 2 — область легкого пуска двигателя; 3 — область затрудненного пуска двигателя; 4 — область практически невозможного пуска холодного двигателя; 5 — область быстрого прогрева и хоро­шей приемистости двигателя; 6 — область медленного прогрева и плохой приеми­стости двигателя; 7 — область незначительного разжижения масла в картере; 8 — область заметного разжижения масла в картере; 9 — область интенсивного разжи­жения масла в картере

По температуре перегонки 10 % бензина (t10%) судят о наличии в нем головных (пусковых) фракций, от которых зависит легкость пуска холодного двигателя. Чем ниже эта температура, тем легче и быстрее можно пустить холодный двигатель, так как большое ко­личество бензина будет попадать в цилиндры в паровой фазе.

После пуска двигателя интенсивность его прогрева, устойчи­вость работы на малой частоте вращения коленчатого вала и при­емистость (интенсивность разгона автомобиля при полностью от­крытом дросселе) зависят главным образом от температуры пере­гонки 50 % бензина (t50%). Чем ниже эта температура, тем легче ис­паряются средние фракции бензина, обеспечивая поступление в непрогретый еще двигатель горючей смеси необходимого состава, устойчивую работу на малой частоте вращения коленчатого вала двигателя и хорошую приемистость.

По температуре перегонки 90% (t90%) и температуре конца пере­гонки (кипения) судят о наличии в бензине тяжелых трудноиспаря­емых фракций, интенсивности и полноте сгорания рабочей смеси и мощности, развиваемой двигателем. Для обеспечения испарения всего бензина, поступающего в цилиндры двигателя, эти темпе­ратуры должны быть как можно более низкими.

Применение бензина с высокой температурой конца перегон­ки приводит к повышенным износам цилиндров и поршневой груп­пы вследствие смывания масла со стенок цилиндров и его разжи­жения в картере, а также неравномерного распределения рабочей смеси по цилиндрам.

По потерям при перегонке бензина судят о склонности его к ис­парению при транспортировании и хранении. Повышенные поте­ри при перегонке свидетельствуют о большом количестве в бензи­не особо легких фракций, интенсивно испаряющихся в жаркое время года.

Давление насыщенных паров , т.е. давление пара, находящегося в равновесии с жидкостью или твердым телом при данной температуре, является одним из показателей испаряемости бензинов.

По давлению насыщенных паров можно судить о наличии легко испаряющихся фракций в бензине, способных образовывать паровые пробки, о его пусковых свойствах, а также о возможных потерях при хранении и огнеопасности. Чем выше давление насыщенных паров, тем больше опасность образования паровых пробок при работе двигателя, но тем лучше пусковые свойства бензина.

Давление паров испаряющегося бензина на стенки емкости, называемое также упругостью паров, зависит от его химического и фракционного состава и температуры. Оно тем выше, чем больше содержится в топливе легкокипящих углеводородов, и уменьшается с понижением температуры.

При разгонке бензинов на стандартном аппарате невозможно оценить особо легкие фракции, наиболее опасные с точки зрения образования паровых пробок в топливопроводах. Поэтому давление насыщенных паров определяют в герметически закрытых приборах при температуре 38 °С.

Зная давление насыщенных паров можно правильно рассчитать объем, который может занимать сжиженный нефтяной газ при определенных максимальных температурах внешней среды, а также правильно обеспечить подачу жидкой и газовой фаз в систему питания двигателя.

Давление насыщенных паров летних бензинов 66,7 кПа, а зимних — 66,7. 93,3 кПа.

Свойства и показатели бензинов, влияющие на подачу топлива

К показателям бензинов, влияющим на подачу топлива кроме давления насыщенных паров относятся показатели содержания воды и механических примесей.

Механическими примесями являются твердые вещества, образующие осадок или находящиеся во взвешенном состоянии. Это может быть пыль, технологическая грязь, продукты коррозии, разрушения шлангов, прокладок, фильтров, окисления и разложения углеводородов, которые могут привести к засорению жиклеров в карбюраторе, распылителей форсунок и т. д., а также стать причиной повышенного износа деталей двигателя. Поэтому бензины и дизельные топлива не должны содержать механические примеси.

Наличие механических примесей определяется визуально путем осмотра пробы на свету в стеклянной емкости. В топливе не должно быть частиц, видимых невооруженным глазом.

Наличие воды в топливе вызывает коррозию деталей и осмоление непредельных углеводородов, содержащихся в бензине. Промышленное топливо практически не содержит воды. Однако зимой вода замерзает в топливных коммуникациях и может попасть в топливо при транспортировке, хранении и заправке. Поэтому топливо до заправки должно отстаиваться в складской таре, а при заправке фильтроваться. Наличие в топливе воды определяется также визуально.

Свойства и показатели бензинов, влияющие на процесс сгорания

Различают нормальное, детонационное и калильное сгорание рабочей смеси.

Сгорание смеси считается нормальным, если воспламенение топлива происходит от свечи зажигания, при этом оно полностью сгорает со средней скоростью распространения фронта пламени 15—25 м/с. Такое сгорание обеспечивает полное тепловыделение и плавное увеличение давления в цилиндрах.

Детонационным сгоранием называется такое сгорание рабочей смеси, при котором кроме воспламенения топлива от искры при определенных условиях происходит самовоспламенение отдельной его части. При этом фронт пламени распространяется со скоростью 1500—2500 м/с. Детонационное сгорание сопровождается звонкими металлическими стуками в зоне камеры сгорания, неполнотой сгорания (черный дым в отработавших газах), перегревом и снижением мощности двигателя.

Переход от нормального сгорания к детонационному обусловлен химическим составом топлива. Существует несколько теорий, объясняющих сущность детонационного сгорания, из них наиболее признанной является теория, по которой считается, что первыми продуктами взаимодействия углеводородов с кислородом являются перекиси и гидроперекиси. Они обладают большой избыточной энергией и при определенных условиях могут накапливаться с выделением большого количества тепла и активных частиц. При этом отмечено, что нормальные углеводороды легко образуют перекисные соединения, а разветвленные устойчивы к их образованию.

Так как каждая молекула гидроперекиси дает начало нескольким цепям, то скорость окисления резко возрастает. Таким образом, в конце такта сжатия при воспламенении смеси от свечи зажигания около нее формируется очаг пламени (рис. 5 ).

Рис. 5 . Этапы детонационного сгорания в рабочей смеси: а — зажигание смеси от свечи зажигания; б — формирование очага горения; в — нормальное движение фронта пламени; г — образование очагов холодно-пламенного окисления в несгоревшей смеси; д — образование детонационной волны; е — движение отраженных волн

Образовавшийся фронт пламенного горения устремляется от свечи зажигания в противоположную часть камеры сгорания. Позади фронта пламени находятся продукты сгорания температурой 2000—2500 °С, а впереди — несгоревшая еще рабочая смесь. По мере нарастания давления в зоне сгоревших газов (0,35—0,5 МПа) сгоревшая часть смеси как бы поджимает несгоревшую, отчего температура последней повышается до 380—450 °С. Поэтому в несгоревшей части смеси ускоряются процессы окисления и повышается концентрация перекисей.

Если концентрация перекисей в несгоревшей части рабочей смеси окажется ниже критической, то фронт пламени горения без существенного изменения скорости достигнет противоположных стенок камеры сгорания, и процесс сгорания смеси пройдет нормально. Если же концентрация перекисей и активных продуктов их распада в несгоревшей части рабочей смеси достигнет критической величины, то начнутся цепные реакции окисления с образованием множества очагов горения.

Так как рабочая смесь уже подготовлена к горению (много перекисей), то она сгорает с большой скоростью и резким повышением давления, в результате чего формируется ударная волна, двигающаяся по камере сгорания со сверхзвуковой скоростью. Мгновенно воспламеняются соседние слои рабочей смеси, а сама ударная волна оказывается совмещенной с фронтом пламени, при этом образуется детонационная волна. Избавиться от этого вредного явления можно подбором для каждой марки двигателя бензина с соответствующей детонационной стойкостью. С другой стороны, известно, что самый простой способ форсирования мощности двигателя путем увеличения степени сжатия ограничен именно детонационной стойкостью бензинов.

Удар детонационной волны о стенки камеры сгорания вызывает отраженные волны, вибрацию стенок и порождает звонкие металлические стуки, характерные для детонации. Слои рабочей смеси, прилегающие к стенкам цилиндра, подвергаются сильному сжатию детонационной волной, в результате чего увеличивается их теплопроводность и усиливается отдача тепла стенкам, двигатель перегревается и его работа становится жесткой.

Калильное сгорание — это воспламенение рабочей смеси от перегретых деталей и нагара в камере сгорания, когда при выключении зажигания сгорание смеси не прекращается, а она воспламеняется на такте очередного сжатия. При этом процесс сгорания и расширения смеси может наступить до завершения такта сжатия с последствиями, аналогичными для детонационного сгорания.

Детонационная стойкость оценивается октановым числом.

Рис. 6 . Индикаторная диаграмма:

1 — нормальное сгорание;

2 — детонационное сгорание; ВМТ — верхняя мертвая точка

На рис. 6 представлена развернутая индикаторная диаграмма, т. е. зависимость изменения давления Р в цилиндре двигателя от угла поворота коленчатого вала φПВ, при нормальном и детонационном сгорании смеси.

Октановое число — условный показатель антидетонационной стойкости бензина, численно равный процентному содержанию изооктана С8Н18, октановое число которого принято за 100, в его смеси с н-гептаном С7Н16, октановое число которого равно 0, эквивалентной по детонационной стойкости испытываемому бензину. Смеси изооктана и н-гептана различных соотношений будут иметь детонационную стойкость от 0 до 100. Например, октановое число бензина равно 80. Это значит, что данный бензин по детонационной стойкости эквивалентен смеси изооктана и н-гептана, в которой изооктана 80 %.

Существуют два метода определения октанового числа: моторный и исследовательский.

Моторным методом определяют октановое число на установке УИТ-65 (рис. 7 ), позволяющей изменять степень сжатия от 4 до 9, где сравнивают детонационную стойкость исследуемого бензина с эталонными образцами при температуре горючей смеси 150 °С и частоте вращения 900 мин -1 .

Исследовательским способом детонационную стойкость определяют при температуре горючей смеси 25—35 °С (смесь не подогревается) и частоте вращения 600 мин -1 . В этом случае в марке бензина присутствует буква «И». Например, АИ-92 — автомобильный бензин с октановым числом по исследовательскому методу не ниже 92.

Так как определение детонационной стойкости по моторному методу проходит в более жестких условиях, то результат будет несколько ниже, чем он был бы получен при определении по исследовательскому методу (табл. 1). В обоих случаях после прогрева двигателя постепенно увеличивается степень сжатия до появления детонации определенной стандартной интенсивности, определяемой по шкале указателя детонации.

В последние годы стали использовать так называемое дорожное октановое число (ДОЧ), которое определяют методом дорожных детонационных испытаний и которое наиболее точно характери­зует эксплуатационные свойства высокооктановых бензинов.

ДОЧ бензинов, в ряде случаев существенно отличающееся от октанового числа по моторному и исследовательскому методу, определяют с помощью специально подготовлен­ного автомобиля. Организация таких испытаний сложна, так как при этом жестко регламентируются дорожные и метеорологиче­ские условия, поэтому они в основном проводятся летом и обыч­но только при отработке конструкций автомобильных двигателей новых моделей.

Рис. 7 . Установка УИТ-65 для моторного определения октановых чисел бензина:

1 — пульт управления; 2 — аппаратура для измерения детонации; 3 — бак для подогрева всасываемого воздуха; 4 — конденсатор охлаждения; 5 — карбюратор; 6 — ресивер с водяным охлаждением; 7 — одноцилиндровый двигатель

Таблица 1. Октановые числа бензинов различных марок

Установлена примерная зависимость между требуемым октановым числом бензина, степенью сжатия и диаметром цилиндра двигателя:

ОЧ = 125,4 — 413 / ε + 0,183D

где ОЧ — октановое число;

ε — степень сжатия;

D — диаметр цилиндра.

Для увеличения степени сжатия на единицу необходимо повысить октановое число на 4—8 единиц.

Октановое число зависит не только от степени сжатия. Заметное влияние оказывают температура окружающей среды, атмосферное давление и влажность. Так, октановое число может быть снижено на единицу при уменьшении температуры воздуха на 10 градусов или атмосферного давления на 10 мм рт. ст. Например, если при температуре окружающей среды —20 °С и атмосферном давлении 760 мм рт. ст. двигателю был необходим бензин с октановым числом 90, то при температуре окружающей среды —10 °С и атмосферном давлении 700 мм рт. ст. достаточно использовать бензин с октановым числом 80.

Способы повышения детонационной стойкости бензинов

Методом прямой перегонки нефти можно получить бензин с октановым числом до 91 (А-76, АИ-80, АИ-91). Однако такое производство бензина нерентабельно: во-первых, из каждой тонны нефти его получится чуть ли не вдвое меньше, во-вторых, не из всякой нефти можно получить бензин АИ-91. Поэтому обычно бензин с необходимым октановым числом получают двумя способами.

Первый способ: бензин прямой перегонки подвергают вторичной переработке (каталитический риформинг, крекинг и др.), т. е. воздействуют на химический состав бензина, что требует значительных средств, но бензин при этом получается наименее вредным для окружающей среды.

Химический состав бензинов включает следующие основные углеводороды: н-алканы, циклоалканы, изоалканы, ароматические углеводороды. Самые устойчивые к детонации углеводороды — ароматические и изоалканы. Следовательно, увеличивая их содержание в бензине, можно повысить октановое число. Практически это достигается при применении бензинов риформинга и введением ароматических углеводородов, таких, как этилбензол. Октановое число высококачественных бензинов АИ-95, АИ-98 достигается этим путем.

Второй способ: введение в бензин прямой перегонки специальных присадок — антидетонаторов. Бензин получается существенно дешевле, но и значительно вреднее (табл. 2).

Антидетонаторы — металлоорганические соединения, незначительное количество которых в бензинах резко повышает их детонационную стойкость. В 1920 г. была найдена добавка — тетраэтилсвинец (ТЭС) РЬ(С2Н5)4, резко подавляющая детонацию. До настоящего времени это самая эффективная добавка. Введение 0,3 % ТЭС в бензин приводит к повышению октанового числа на 15—25 единиц. Известно несколько марок этиловых жидкостей, которые содержат от 54 до 58 % ТЭС. Бензины, содержащие этиловую жидкость, ядовиты, поэтому окрашиваются в различные цвета.

Имеются заменители ТЭС, такие, как пентакарбонил железа Fe(CO)5, декарбонил марганца Мn2(СО)10 и циклопентадиенилкарбонил марганца (ЦТМ) С5Н5Мn(СО)3 с очень высоким анти-детонационным эффектом.

Наиболее приемлемой является присадка метилтребутилового эфира (МТБЭ). Добавка 10 % МТБЭ в бензин повышает октановое число на 5—6 единиц. МТБЭ хорошо совмещается с бензином и с его помощью получают неэтилированные бензины А-76 и АИ-93.

Повышение октанового числа с помощью ТЭС обходится в пять — девять раз дешевле, чем при использовании других антидетонаторов, но они экологически более вредные.

В России неэтилированные бензины составляют около 50 %, причем из них более 85 % с октановым числом 76.

Различают этилированные бензины по цвету: бензин А-76 окрашен в желтый цвет, АИ-93 — в оранжево-красный, экспортное исполнение бензинов АИ-80, АИ-92 и АИ-96 светло-желтого цвета.

Таблица 2. Антидетонаторы и их негативные воздействия

В зависимости от октанового числа по исследовательскому методу устанавливают четыре марки бензинов: «Нормаль-80», «Регуляр-92», «Премиум-95» и «Супер-98» (см. табл. 3). Бензин «Нормаль-80» предназначен для грузовых автомобилей наряду с бензином АИ-80. Бензин «Регуляр-92» предназначены для эксплуатации автомобилей вместо этилированного А-93. Автомобильные бензины «Премиум-95» и «Супер-98» полностью отвечают европейским требованиям и конкурентоспособны на нефтяном рынке и предназначены в основном для зарубежных автомобилей, эксплуатируемых в СНГ.

4.1 Нормальное и детонационное сгорание

Повышение мощности и экономичности бензиновых двигателей возможно прежде всего за счет увеличения степени сжатия. Эта тенденция позволяет в наиболее полной степени совершенствовать конструкции двигателей. В то же время она предъявляет более жесткие требования к детонационной стойкости бензинов: чем выше детонационная стойкость, тем экономичнее и эффективнее работа двигателя.

При сгорании топлива в двигателе происходит превращение его химической энергии в тепловую и далее в механическую. Характер протекания процесса сгорания обусловливает как мощность и экономические показатели двигателя, так и его надежность и долговечность.

Вид сгорания в двигателе можно разделить на нормальное и аномальное.

При нормальном рабочем процессе в двигателе с искровым зажиганием сгорание смеси можно условно разделить на три фазы (рис. 8): 1 — начальную, в течение которой небольшой очаг горения, возникающий между электродами свечи, постепенно превращается в развитый фронт турбулентного пламени; // — основную фазу распространения пламени; /// — фазы догорания смеси.

Рис. 8. Индикаторная диаграмма процесса сгорания в двигателе с зажиганием от искры

I, II, III — продолжительность соответственно начальной, основной и завершающей фаз горения в градусах поворота коленчатого вала (°ПКВ); Θ — угол опережения зажигания

Провести резкую грань между отдельными фазами сгорания не представляется возможным, так как изменение характера процесса происходит постепенно.

Первая фаза — период скрытого сгорания или период задержания воспламенения (12-15% от общего времени сгорания топлива) характеризуется более интенсивной подготовкой рабочей смеси к сгоранию, чем в период сжатия. В этой фазе сгорания интенсифицируются окислительные процессы (прежде всего за счет подогрева смеси от электрической искры происходит низкотемпературное горение топлива), а повышение давления практически не отличается от повышения давления, вызываемого сжатием без горения.

Вторая фаза — непосредственное сгорание (сопровождается более быстрым, чем при чистом сжатии, повышением давления) продолжается до максимального подъема давления и обычно заканчивается спустя несколько градусов после верхней мертвой точки (в.м.т.). Сгорание происходит интенсивнее при более высокой температуре рабочей смеси к моменту подачи искры. Скорость сгорания подчиняется закону действующих масс:

где ν — скорость реакции; С1, С2, С3 — концентрация действующих веществ; k — постоянная, зависящая от природы реагирующих веществ.

Так как скорость сгорания пропорциональна произведению концентраций реагирующих веществ, то по мере сгорания, когда их концентрация снижается, скорость сгорания уменьшается.

Химический состав и количество топлива, его соотношение с воздухом, величина остаточных газов в цилиндре, температура и давление смеси, конструкция камеры сгорания и ряд других факторов существенно влияют на скорость сгорания. Наиболее интенсивно процесс сгорания протекает при α=0,95, что характерно для небольшого обогащения горючей смеси. Дальнейшее обогащение топлива приводит к увеличению неполноты его сгорания, а обеднение — к расходу тепла на нагревание избыточного азота. В обоих случаях снижается скорость сгорания. При повышении степени сжатия двигателя процесс сгорания интенсифицируется (повышаются температура и давление смеси).

Нормальное течение процесса иллюстрирует схема сгорания рабочей смеси и распространения фронта пламени, показанная на рис. 9. Видно, что скорость сгорания примерно постоянна весь период, давление в цилиндре двигателя от расширяющихся продуктов сгорания возрастает плавно и достигает максимального значения вблизи в.м.т., поршень движется вниз (к н.м.т.), и занимаемый продуктами сгорания объем увеличивается. Все это характеризует нормальную работу двигателя.

Рис. 9. Схема распространения фронта пламени по камере сгорания: А — искра

При нормальном сгорании процесс проходит плавно с почти полным протеканием реакций окисления топлива и средней скоростью распространения пламени 10-60 м/с.

Основными нарушениями нормального сгорания в двигателе с воспламенением от искры являются: детонация, преждевременное и последующее воспламенение (калильное зажигание), воспламенение от сжатия при выключенном зажигании.

Детонация возникает при самовоспламенении части топливовоздушной смеси, до которой пламя от свечи доходит в последнюю очередь. Внешне детонация проявляется в возникновении звонких металлических стуков при работе двигателя на больших нагрузках. Скорость распространения пламени резко возрастает (почти в 100 раз) и достигает 1500-2500 м/с, возникает детонационное сгорание, характеризующееся неравномерным протеканием процесса, скачкообразным изменением скорости движения пламени и возникновением ударной волны (рис.10).

При этом реакции окисления проходят не полностью и в отработавших газах обнаруживаются продукты неполного сгорания топлива. Детонация приводит к потере мощности двигателя из-за неполноты сгорания и увеличения теплоотдачи стенкам цилиндра.

Рис. 10. Физическая картина детонационного горения в двигателе: а-а — положение фронта пламени; А — очаг самовоспламенения (детонации); Д1-ДЗ — мгновенные положения распространения зоны горения от очага А; 01-04 — ударные волны; 01′-04′ — отраженные волны

При этом резко повышается температура головок цилиндра и охлаждающей жидкости, а в отработавших газах появляется дымление. Длительная работа с детонацией приводит к перегреву двигателя, вследствие чего может возникнуть преждевременное самовоспламенение рабочей смеси, а также механические повреждения отдельных деталей двигателя (рис. 11).

Рис. 11. Поршень, разрушенный детонацией

Прогар поршней и клапанов, пригорание поршневых колец, нарушение изоляции свечей, растрескивание вкладышей шатунных подшипников — все это может быть вызвано детонацией. Согласно перекисной теории (она в настоящее время общепризнанна), при детонации образуются первичные продукты окисления топлива — органические перекиси.

При присоединении молекулы кислорода к углеводородам по С-С связи образуется перекись (R-O-O-R), по С-Н связи — гидроперекись (R-O-O-H).

Перекиси, образующиеся в процессе предварительного окисления, накапливаясь в несгоревшей части рабочей смеси, распадаются (по достижении критической концентрации) со взрывом и выделением большого количества тепла. Тем самым активизируется вся смесь. Такой момент будет сопровождаться взрывным сгоранием смеси, т.е. детонацией. На рис. 12 представлена индикаторная диаграмма, снятая при работе двигателя с детонацией.

Рис. 12. Индикаторная диаграмма основных видов сгорания в карбюраторном двигателе: а — нормальное сгорание; б, в — калильное зажигание; г — детонационное сгорание; Р — давление; γ угол поворота коленчатого вала

Для возникновения детонационной волны (детонационного очага) наиболее благоприятное место — часть бензиновоздушной смеси, которая находится в удаленных частях камеры сгорания. От очага детонации горение быстро распространяется, по всей части топливно-воздушной смеси и охватывает ее. Механизм распространения волны сгорания от детонационного очага отличен от механизма нормального горения. Фронт пламени в детонационной волне распространяется не путем теплопередачи, а за счет практически мгновенного выделения большого количества химической энергии в малом объеме. Это вызывает резкое местное повышение давления, в результате чего образуется ударная волна. Последняя, проходя со скоростью до 2500 м/с по оставшейся несгоревшей части смеси, вызывает ее сжатие, нагрев и воспламенение. Детонационная волна многократно отражается от стенок цилиндра, при этом возникает характерный металлический стук.

Различают следующие группы факторов, влияющих на возникновение и интенсивность детонации: зависящие от конструкции двигателя, эксплуатационные и связанные со свойствами топлива.

Конструктивными факторами, влияющими на процесс горения, являются степень сжатия, форма и размеры камеры сгорания, количество и расположение свечей, диаметр цилиндра, ход поршня, материал головки блока цилиндра двигателя.

Эксплуатационными факторами, влияющими на возникновение детонации, являются коэффициент избытка воздуха, число оборотов двигателя, угол опережения зажигания, температура охлаждающей жидкости, влажность воздуха, слой нагара в камере сгорания и др.

Фактором, связанным со свойствами топлива, является его детонационная стойкость. Причем при испарении топлива в процессе смесеобразования (вследствие различной детонационной стойкости отдельных фракций) детонация также может усилиться. Детонационная стойкость бензинов зависит от его углеводородного состава. Ароматические углеводороды обладают наибольшей детонационной стойкостью, меньшей детонационной стойкостью обладают изопарафиновые и олефиновые и самой низкой — парафиновые углеводороды.

Когда детонирует около 5% смеси, появляются внешние признаки детонации. Если детонирует 10-12% смеси, наблюдается детонация средней интенсивности. Очень сильная детонация характерна для 18-20% детонирующей смеси. Детонационное сгорание топлива отличается характерным резким металлическим стуком в цилиндрах, перегревом головок цилиндров и падением его мощности, периодически появляющимся черным дымом отработавших газов. Детонация приводит к прогоранию поршней, выпускных клапанов, к перегреву двигателя.

Одним из распространенных видов аномального сгорания является калильное зажигание.

Под калильным зажиганием понимают неуправляемое воспламенение рабочей смеси от раскаленного тела: тлеющего нагара или перегретых деталей.

Особенность зажигания тлеющим нагаром — его взаимосвязь с детонацией: при возникновении детонационных волн нагар со стенок камеры сгорания частично удаляется, устраняя тем самым калильное зажигание, так как исчезают «горячие точки» — причина самопроизвольного воспламенения рабочей смеси. Так как скорость сгорания смеси при этом увеличивается, детонация прекращается, однако после выброса частиц нагара она возобновляется вновь.

При калильном зажигании перегретыми деталями (центральные электроды, «юбочки» изоляторов свечей, реже выпускные клапаны) воспламенение не прекращается по мере его выгорания, а прогрессивно самоусиливается.

Для оценки склонности свечи к перегреву пользуются показателем, называемым калильным числом (КЧ). Его величину для данного двигателя подбирают так, чтобы, с одной стороны, исключить возможность калильного зажигания натеплонапряжен-ных режимах (в этом случае необходимо низкое КЧ), а с другой стороны, обеспечить на минимальных режимах температуру края «юбочки» и центрального изолятора не ниже 397°С во избежание их закоксовывания (для этого необходимо достаточно высокое КЧ). Активность нагара с точки зрения калильного зажигания зависит от содержания в бензинах ароматических углеводородов и зольных присадок. Так как высокомолекулярные ароматические углеводороды образуют активный нагар, склонный к саморазогреванию (присутствие в нагаре продуктов сгорания тетраэтилсвинца (ТЭС) снижает температуру воспламенения нагаров с 550-600 до 200-300 °С), особенно трудно удовлетворить этим требованиям в теплонапряженных двигателях, работающих на топливах с высокими детонационными свойствами.

С калильным зажиганием борются, улучшая конструкцию камер сгорания и изменяя свойства образующегося нагара путем введения в топливо специальных присадок.

Что такое детонация двигателя?

Силовая установка автомобиля работает за счет сгорания топливовоздушной смеси в цилиндрах. Процесс горения должен проходить по определенным условиям, чтобы обеспечить максимальный выход энергии с дальнейшим её преобразованием в механическое действие. Одно из нарушений процесса горения топлива — детонация двигателя.

замена поршневой после детонации

Как проявляется детонация

Возникновение детонации в цилиндрах сопровождается металлическим звоном. При этом сам мотор вибрирует, что передается на кузов, а также запозданием прекращения работы (после отключения зажигания двигатель некоторое время еще работает). Если эти симптомы появились – в цилиндрах двигателя происходит детонационное сгорание.

В бензиновом двигателе топливовоздушная смесь, которая закачана в цилиндры, предварительно сжимается поршнем, что обеспечивает смесеобразование и повышение температуры, которая сказывается на воспламеняемости. Находящуюся под давлением смесь поджигает искра свечи зажигания. При этом образуется фронт пламени, который распространяется по всему объему от точки воспламенения к краям. Процесс распространения медленный – 20-30 метров в секунду. Сгорание топлива сопровождается возрастанием температуры внутри цилиндра и давления, которое и выступает как энергия, преобразуемая в механическое действие.

Детонация в цилиндре при работе двигателя

Детонационное сгорание – процесс, при котором возрастание давления и температуры приводит к появлению окислительных процессов компонентов смеси, что становится причиной возникновения дополнительного очага воспламенения. В результате фронт пламени распространяется быстрее, чем при нормальном горении (скорость распространения пламени превышает 1500 м/сек). Вместо одного очага (от свечи) становится два (второй – самопроизвольный), при этом фронт пламени каждого из них идет навстречу друг другу.

Видео: ДЕТОНАЦИЯ НАГЛЯДНО

В цилиндре от такого процесса происходит взрыв смеси, а не постепенное распространение пламени. Столкновение двух фронтов пламени приводит к увеличению давления и температуры. А это приводит к усилению ударных нагрузок на цилиндропоршневую группу и кривошипно-шатунный механизм, а из-за температуры перегревается мотор.

Детонационное сгорание и калильное зажигание

Детонационное сгорание и калильное зажигание часто путают между собой. Коротко охарактеризовать их можно так: калильное зажигание – самопроизвольное воспламенение смеси от сильно разогретых элементов, расположенных в цилиндре. Детонация – самостоятельное поджигание смеси в результате воздействия давления (при сильном сжатии смеси происходят процессы, приводящие к самовоспламенению).

При этом детонация — процесс, который возникает при резкой смене режима работы двигателя и носит кратковременный характер. Она появиться может при резком нажатии на педаль газа. В результате смесь обогащается, но обороты двигателя еще не соответствуют требуемым. Из-за богатого топливом состава смеси возникает детонационное сгорание, но как только мотор выйдет на нужные обороты, детонация исчезает и процесс горения становится нормальным.

Калильное зажигание – следствие детонации. Если по каким-то причинам детонационное сгорание продлится длительное время, высокая температура, появляющаяся при детонации, разогреет элементы в камере сгорания и самовольное возгорание смеси будет происходить уже от них.

Причины возникновения

Причины появления детонации:

  1. Несоответствие пропорций топливовоздушной смеси. Рабочей считается пропорция воздуха к бензину на уровне 14,7 к 1. Если эта пропорция снизится до 9 к 1, то в топливе при сжатии происходят окислительные процессы, воспламеняющие смесь. Это наблюдается при резком изменении режима работы мотора. Но там детонация кратковременна. Длительный же процесс происходит из-за нарушения работы системы питания автомобиля.
  2. Несоответствие угла опережения зажигания. Смесь поджигается, пока поршень не пройдет ВМТ. Но при нормальных процессах, пока фронт пламени распространится на весь объем, поршень уже пройдет точку и направится вниз. И в этот момент произойдет повышение давления, которое дополнительно толкает поршень вниз. Если же поджигание смеси происходит постоянно чуть раньше (ранее зажигание), то смесь горит, что сопровождается повышением давления и в дополнение давление создает и поршень, которые еще пока движется вверх. В итоге создаются условия для появления стороннего источника воспламенения.
  3. Низкая детонационная устойчивость топлива. Этот показатель характеризует октановое число. Чем оно выше, тем больше бензин «сопротивляется» появлению окислительных процессов при воздействии давления. Это зависит от степени сжатия в цилиндрах силовой установки. Для наглядности эту причину рассмотрим так: степень сжатия мотора составляет 12, и в документации указывается, что требуется бензин с октановым числом не ниже, чем 92. Это указывает на то, что только топливо с таким показателем и выше сможет устоять воздействию давления, которое создаётся в цилиндре. Если в такой мотор залить 80-й бензин, то детонационной устойчивости будет недостаточно, чтобы не самовоспламеняться. Примечательно, что не всегда именно бензин «виноват» в детонации. Если в цилиндры попадает масло, то оно понижает октановое число. В результате даже на 95-м бензине двигатель будет детонировать.
  4. Степень сжатия. Она тоже влияет на вероятность появления детонации. Если она увеличилась, то топливо уже не противостоит воздействию давления. Яркий пример – заливка масла в цилиндры изношенного двигателя перед запуском. Масло повышает давление, что приводит к детонационному воспламенению, и двигатель запускается. Но в таком моторе детонационное сгорание происходит только на начальном этапе – пуске. А вот если степень сжатия повысилась из-за большого количества отложений в цилиндре или попадающего в него масла, то детонация будет постоянной.
Видео: Детонация двигателя и методы устранения в прошивке

Последствия детонации

Воздействия ударных нагрузок и температуры пагубно влияет на элементы ЦПГ, клапанов, свечей.

Ударные нагрузки приводят к:

  • интенсивному износу кривошипно-шатунного механизма;
  • износу цилиндропоршневой группы;
  • разрушению стенок цилиндров и днищ поршней.

Высокая температура оплавляет днище поршня (вплоть до полного прогорания), подгорают седла и кромки клапанных тарелок, оплавляются свечные электроды, повреждается прокладка ГБЦ.

оплавленный поршень

Где искать причину?

  1. Детонация на всех режимах («виноват» скорее всего некачественный бензин или нарушение угла зажигания). Если мотор «ест» масло, то детонация может происходить и из-за этого.
  2. Детонирует на холостых оборотах. Проявляется, если двигатель был под нагрузкой, а затем обороты были сброшены. Детонация из-за смены режима может усиливаться неправильным зажиганием, сильной закоксовкой мотора, неправильным смесеобразованием.
  3. Детонирует после выключения зажигания (в этом случае детонация переросла уже в калильное зажигание. Причина кроется в изменении любых условий – зажигания, степени сжатия, топливе).

При появлении детонации в первую очередь обращаем внимание на качество бензина. Благодаря смене топлива от проблемы избавляемся. Далее уже проверять остальные условия – выставить зажигание, проверить работу топливной системы и т. д.

Если появляется калильное зажигание, то в этом случае помогает раскоксовка мотора.

Что такое нормальное детонационное и калильное сгорание

Однако при слишком быстром сгорании работа двигателя сопровождается повышенными ударными нагрузками на его детали.

Для повышения топливной экономичности важное значение имеет вопрос расширения предела обеднения смеси при воспламенении и горении. Обеднение смеси способствует повышению индикаторного КПД двигателя, что позволяет получить существенную экономию топлива на частичных нагрузках. На предел возможного обеднения оказывает существенное влияние химический состав топлива. Так, если для жидких углеводородных топлив предельное значение коэффициента избытка воздуха а составляет 1,15…1,2; углеводородных газов 1,2…1,3, то для спиртовых топлив 1,25… 1,30. Качественное приготовление топливно-воздушной смеси и в особенности ее полное испарение и однородность состава также способствуют расширению предела обеднения.

В ряде случаев процесс распространения пламени нарушается и возникает так называемое аномальное сгорание. Одним из распространенных видов аномального сгорания является калильное зажигание. Это явление связано с тем, что в некоторых случаях при перегреве двигателя происходит самопроизвольное воспламенение рабочей смеси от «горячих точек». Такими точками (или зонами) могут являться клапаны, наиболее выступающие части свечей зажигания, нагары, образующиеся при сгорании топлива, и др.

Наиболее характерным проявлением калильного зажигания является продолжение работы двигателя в виде кратковременного неустойчивого «дерганья» после его выключения. При работе форсированных двигателей на режимах повышенных нагрузок калильное зажигание в некоторых случаях является причиной преждевременного (т. е. до появления искры на свече зажигания) воспламенения рабочей смеси. Это ведет к перегреву двигателя, падению его мощности из-за смещения сгорания на линию сжатия, а также способствует возникновению детонации.

Вследствие увеличения нагрузок на детали калильное зажигание ведет к повышенному износу двигателя. В то же время интенсивное калильное зажигание может вызвать прогорание и разрушение поршней, обгорание их кромок и клапанов, залегание колец и даже поломку шатунов и обрыв коленчатых валов.

Калильное зажигание может вызываться двумя источниками различной природы: горячими металлическими поверхностями и нагарами. В первом случае зажигание устраняется с помощью улучшения конструкции камер сгорания, обеспечения отвода тепла от перегреваемых поверхностей, использования «холодных» клапанов и свечей и др.

В отличие от металлических поверхностей нагар при взаимодействии с кислородом воздуха может саморазогреваться и становиться источником воспламенения топливной смеси даже при низких температурах подогрева. Калильная активность нагара зависит главным образом от содержания в бензинах ароматических углеводородов, их строения и молекулярного веса. В частности, с увеличением молекулярного веса образуется более активный нагар. Поэтому основным способом борьбы с калильным зажиганием от нагара является ограничение содержания в бензинах ароматических углеводородов, а также использование в бензинах различных присадок, изменяющих состав и свойства нагара.

При использовании бензинов, не соответствующих требованиям двигателя, на ряде режимов его работы может возникать особый вид аномального сгорания — детонационное сгорание. Это широко известное явление проявляется в звонком металлическом стуке, дымлении отработавших газов и резком перегреве двигателя.

Причиной детонационного сгорания является образование неустойчивых перекисных соединений при окислении углеводородов топлива. При повышенных температурах и давлениях в камере сгорания перекисные соединения разлагаются с выделением большого количества тепла. Процесс разложения носит взрывной характер, в результате чего в цилиндре возникают ударные волны и скорость распространения пламени возрастает до 2000… 2500 м/с (рис. 10, кривая г). Перекисные соединения образуются при сгорании топлива всегда, но детонация возникает лишь при их определенном (критическом) содержании для определенных условий (давления и температуры) в цилиндре. Чем выше давление и температура в цилиндрах, тем при меньшем содержании перекисных соединений начинается переход нормального сгорания в детонационное.

Главная опасность детонации связана с перегревом камеры сгорания и днища поршня из-за высоких температур в детонационной волне и усиления теплоотдачи. Кроме того, детонационные волны, многократно отражаясь от стенок, разрушают смазочный слой на поверхности гильзы и тем самым способствуют увеличению износов цилиндра и поршневых колец. Детонация также ведет к повышенным вибрационным нагрузкам на детали цилиндро-поршневой группы. При детонации мощность двигателя падает, а расход топлива увеличивается. Поэтому длительная работа двигателя с детонацией недопустима.

Возникновению детонации способствует увеличение продолжительности пребывания последних порций топлива в камере сгорания, ведущее к ускорению образования перекисных соединений. Поэтому увеличение частоты вращения коленчатого вала и уменьшение угла опережения зажигания ведет к подавлению детонации благодаря уменьшению времени нахождения порции топливной смеси в цилиндре. Таким образом, при возникновении детонации ее можно устранить с помощью таких мер, как прикрытие дросселя, уменьшение загрузки автомобиля, переход на более высокие частоты вращения коленчатого вала двигателя путем включения низшей передачи и уменьшения угла опережения зажигания. Однако эти способы можно использовать лишь в крайних случаях и кратковременно, так как все они ведут к увеличению расхода топлива, а в ряде случаев — к снижению мощности двигателя.

Количество образующихся перекисей в наибольшей степени зависит от состава бензина. Поэтому наиболее эффективным способом борьбы с детонацией является повышение детонационной стойкости бензинов. Под детонационной стойкостью (или антидетонационными свойствами) бензинов понимается их способность противостоять возникновению детонации в двигателе. Основным показателем детонационной стойкости бензинов является октановое число, определение которого осуществляется на специальных одноцилиндровых моторных установках с переменной степенью сжатия. Детонационная стойкость бензина на этих установках оценивается по сравнению с известной детонационной стойкостью эталонных топлив. В качестве таких топлив используются смеси изооктана, детонационная стойкость которого принята за 100 единиц, и гептана, октановое число которого равно 0. Определение детонационной стойкости бензина заключается в подборе такой эталонной смеси изооктана и гептана, интенсивность детонации которой, регистрируемая с помощью прибора, соответствует интенсивности детонации испытуемого бензина при одной и той же степени сжатия. Под октановым числом бензина понимается показатель, равный процентному содержанию изооктана в эталонной смеси с гептаном, эквивалентной по детонационной стойкости этому бензину.

Октановое число автомобильных бензинов определяют двумя методами — моторным и исследовательским. Режим испытаний по исследовательскому методу менее напряженный, чем по моторному, в связи с чем получаемое октановое число несколько выше, чем определенное по моторному методу. Разница между исследовательским и моторным октановым числами называется «чувствительностью» бензина и зависит от его состава.

В СССР для определения октановых чисел бензинов ранее выпускались установки ИТ9-2 и ИТ9-6. Установка ИТ9-2 предназначена для определения октанового числа по моторному методу, ИТ9-6—по исследовательскому. В настоящее время эти установки сняты с производства и вместо них выпускается одна универсальная установка УИТ -65, позволяющая определять октановые числа по обоим методам. Эта установка оборудована электронным прибором для измерения интенсивности детонации и автоматическими устройствами для поддержания требуемого режима испытаний.

Условия сгорания топливной смеси в двигателе существенно отличаются от режима оценки октановых чисел бензинов на установке УИТ -65. Поэтому для определения фактической детонационной стойкости бензинов, а также требований двигателя по этому показателю используется специальная методика детонационных испытаний двигателей и автомобилей. Метод детонационных испытаний позволяет получить детонационную характеристику двигателя во всем диапазоне его рабочих частот, оценить фактическую детонационную стойкость бензина и на этой основе установить его соответствие требованиям двигателя.

Детонационная стойкость бензинов обусловлена, прежде всего, требованиями двигателя и главным образом его степенью сжатия. При увеличении степени сжатия на единицу требуется повысить детонационную стойкость бензина на 4…8 октановых единиц. Исторически развитие двигателей с принудительным воспламенением шло по пути непрерывного увеличения степени сжатия и соответственно повышения октановых чисел используемых бензинов., Такая тенденция обусловлена ростом мощности

и снижением расхода топлива при увеличении степени сжатия двигателя. Однако повышение детонационной стойкости бензинов связано с ростом их стоимости и, главное, увеличением затрат нефтяного сырья. Поэтому в настоящее время оптимальный уровень детонационной стойкости бензинов устанавливается с химмотологических позиций — на основе разумного компромисса между автомобильной и нефтеперерабатывающей промышленностью, обеспечивающего наибольший народнохозяйственный эффект.

Основным способом повышения детонационной стойкости бензинов является исключение из их состава или сведение к минимуму содержания углеводородов, образующих при сгорании большое количество перекисных соединений, и использование более стойких углеводородов.

Вторым способом является введение в состав бензина специальных а н-тидетонационных присадок (антидетонаторов), разрушающих в процессе горения образующиеся перекиси или препятствующие их возникновению.

Детонационная стойкость бензинов определяется их компонентным составом и строением содержащихся углеводородов. Как было показано выше, товарные бензины получаются смешением продуктов прямой перегонки нефти и вторичных процессов ее переработки. При этом одним из важнейших требований, определяющих состав бензинов, является обеспечение необходимой детонационной стойкости (октанового числа).

Большинство бензинов прямой перегонки имеет невысокие октановые числа в пределах 40…50 ед., что связано с содержанием в них большого количества парафиновых углеводородов с низкой детонационной стойкостью. Октановые числа бензинов термического крекинга выше и находятся в пределах 64…70 ед. Наибольшей детонационной стойкостью характеризуются бензины каталитического риформинга — платформинга, содержащие значительное количество ароматических углеводородов. В платформинге обычного режима получают бензины с октановым числом по исследовательскому методу 82…85 ед. При жестком режиме платформинга содержание ароматических углеводородов в бензине может быть повышено до 70%, что обеспечивает его октановое число в пределах 95…97 ед.

Перечисленные компоненты являются базовыми для приготовления товарных сортов бензинов, при этом также могут дополнительно вводиться и другие компоненты. Такие бензины обычно содержат значительное количество дорогостоящих высокооктановых компонентов, кроме того, их производство связано с дополнительным расходом нефти. Поэтому в основной массе выпускаемых бензинов требуемая детонационная стойкость достигается за счет добавки антидетонаторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *