Устройство автомобильного генератора и его проверка
Устройство и принцип работы автомобильного генератора
Электрооборудование любого автомобиля включает в себя генератор — устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.
Требования, предъявляемые к генератору:
выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи;
напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.
Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи и, ускоренному выходу ее из строя.
Принцип работы генератора и его принципиальное конструктивное устройство одинаковы для всех автомобилей, отличаются только качеством изготовления, габаритами и расположением присоединительных узлов.
1
Основные части генератора:
1. Шкив – служит для передачи механической энергии от двигателя к валу генератора посредством ремня;
2. Корпус генератора состоит из двух крышек: передняя (со стороны шкива) и задняя (со стороны контактных колец), предназначены для крепления статора, установки генератора на двигателе и размещения подшипников (опор) ротора. На задней крышке размещаются выпрямитель, щеточный узел, регулятор напряжения (если он встроенный) и внешние выводы для подключения к системе электрооборудования;
3. Ротор — стальной вал с расположенными на нем двумя стальными втулками кпювообразной формы. Между ними находится обмотка возбуждения, выводы которой соединены с контактными кольцами. Генераторы оборудованы преимущественно цилиндрическими медными контактными кольцами;
4. Статор — пакет, набранный из стальных листов, имеющий форму трубы. В его пазах расположена трехфазная обмотка, в которой вырабатывается мощность генератора;
5. Сборка с выпрямительными диодами — объединяет шесть мощных диодов, запрессованных по три в положительный и отрицательный теплоотводы;
6. Регулятор напряжения — устройство, поддерживающее напряжение бортовой сети автомобиля в заданных пределах при изменении электрической нагрузки, частоты вращения ротора генератора и температуры окружающей среды;
7. Щеточный узел – съемная пластмассовая конструкция. В ней установлены подпружиненные щетки, контактирующие с кольцами ротора;
8. Защитная крышка диодного модуля.
Рассмотрим электрическую схему соединения элементов генератора.
2
Принципиальная электрическая схема генераторной установки:
1. Включатель зажигания;
2. Помехоподавляющий конденсатор;
3. Аккумуляторная батарея;
4. Лампа-индикатор исправности генератора;
5. Положительные диоды силового выпрямителя;
6. Отрицательные диоды силового выпрямителя;
7. Диоды обмотки возбуждения;
8. Обмотки трех фаз статора;
9. Обмотка возбуждения(ротор);
10. Щеточный узел;
11. Регулятор напряжения;
B+ Выход генератора "+";
B- "Масса" генератора;
D+ Питание обмотки возбуждения, опорное напряжение для регулятора напряжения.
В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется электрическое напряжение, пропорциональное скорости изменения магнитного потока. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются источник переменного магнитного поля и катушка, с которой непосредственно будет сниматься переменное напряжение.
Обмотка возбуждения с полюсной системой, валом и контактными кольцами образуют ротор, его важнейшую вращающуюся часть, которая и является источником переменного магнитного поля.
3
Ротор генератора
1. вал ротора;
2. полюса ротора;
3. обмотка возбуждения;
4. контактные кольца.
Полюсная система ротора имеет остаточный магнитный поток, который присутствует даже при отсутствии тока в обмотке возбуждения. Однако его значение невелико и способно обеспечить самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому, для первоначального намагничивания ротора через его обмотку пропускают небольшой ток от аккумуляторной батареи, обычно через лампу контроля работоспособности генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, чтобы генератор мог возбудиться уже на холостых оборотах двигателя. Исходя из этих соображений, мощность контрольной лампы обычно составляет 2…3 Вт. После того, как напряжение на обмотках статора достигает рабочей величины, лампа тухнет, и питание обмотки возбуждения осуществляется от самого генератора. В этом случае генератор работает на самовозбуждении.
Выходное напряжение снимается с обмоток статора. При вращении ротора напротив катушек обмотки статора появляются попеременно "северный" и "южный" полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку статора, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения зависит от частоты вращения ротора генератора и числа его пар полюсов.
4
Статор генератора
1. обмотка статора;
2. выводы обмоток;
3. магнитопровод.
Обмотка статора трехфазная. Она состоит из трех отдельных обмоток, называемых обмотками фаз или просто фазами, намотанных по определенной технологии на магнитопровод. Напряжение и токи в обмотках смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов, как это показано на рисунке.
5
Осциллограммы фазовых напряжений обмоток
U1, U2, U3 – напряжения обмоток;
Т – период сигнала (360 градусов);
F – фаза смещения (120 градусов).
Фазовые обмотки могут соединяться в "звезду" или "треугольник".
6
Виды соединения обмоток
1. «звездой»;
2. «треугольником».
При соединении в "треугольник" ток в каждой из обмоток в 1,7 раза меньше тока, отдаваемого генератором. Это значит, что при том же отдаваемом генератором токе, ток в обмотках при соединении в "треугольник" значительно меньше, чем у "звезды". Поэтому в генераторах большой мощности довольно часто применяют соединение в "треугольник", т. к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Более тонкий провод можно применять и при соединении типа "звезда". В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в "звезду", т. е. получается "двойная звезда".
Для того, чтобы магнитный поток обмотки возбуждения подводился непосредственно к обмотке статора и не рассеивался в пространстве, катушки помещены в пазы стальной конструкции — магнитопровода. Так как переменное магнитное поле наводится не только в катушках, но и в магнитопроводе статора, то это приводит к возникновению паразитных вихревых токов, которые ведут к потере мощности и нагревают статор. Для уменьшения проявления этого эффекта магнитопровод изготавливают из набора стальных пластин (пакета железа).
Бортовая сеть автомобиля требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор. Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом "+" генератора, а другие три с выводом "—" ("массой"). Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении. Следует обратить внимание на то, что под термином "выпрямительный диод" не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.
7
Сборка с выпрямительными диодами
1. силовые диоды;
2. дополнительные диоды;
3. теплоотвод.
Многие производители в целях защиты электронных узлов автомобиля от всплесков напряжения заменяют диоды силового моста стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны "пробиваются ", т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе "+" генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после "пробоя" используется и в регуляторах напряжения.
Как было отмечено выше, напряжения на обмотках изменяются по кривым, близким к синусоиде и в одни моменты времени они положительны, в другие отрицательны. Если положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее то, например, для момента времени t когда напряжение второй фазы отсутствует, первой фазы — положительно, а третьей — отрицательно. Направление напряжений фаз соответствует стрелкам показанным на рисунке.
8
Направление токов в обмотках и выпрямителе генератора
Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. Рассмотрев любые другие моменты времени, легко убедиться, что в трехфазной системе напряжения, возникающего в обмотках фаз генератора, диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление — от вывода "+" генераторной установки к ее выводу "—" ("массе"), т. е. в нагрузке протекает постоянный (выпрямленный) ток.
У значительного количества типов генераторов обмотка возбуждения подключается к собственному выпрямителю, собранному на трех диодах. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленным током эту обмотку. Причем в выпрямитель обмотки возбуждения тоже входят 6 диодов, три из них общие с силовым выпрямителем (отрицательные диоды). Ток возбуждения значительно меньше, чем ток, отдаваемый генератором в нагрузку. Поэтому в качестве диодов обмотки возбуждения применяются малогабаритные слаботочные диоды на ток не более 2 А (для сравнения, диоды силового выпрямителя допускают протекание токов силой до 25… 35 А).
При необходимости увеличения мощности генератора применяется дополнительное плечо выпрямителя.
9
Схема генераторной установки с дополнительными диодами
Такая схема выпрямителя может иметь место только при соединении обмоток статора в "звезду", т. к. дополнительное плечо запитывается от "нулевой" точки "звезды". Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками — первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой.
Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном — нет. Следовательно, мощность, развиваемая третьей гармоникой фазного напряжения не может быть использована потребителями. Чтобы использовать эту мощность, добавлены диоды, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5…15% при частоте вращения более 3000 мин-1.
Напряжение генератора без регулятора сильно зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки — тем меньше это напряжение. Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Ранее применялись вибрационные регуляторы, а затем контактно-транзисторные. Эти два типа регуляторов в настоящее время полностью вытеснены электронными.
Оформление электронных полупроводниковых регуляторов может быть различным, но принцип работы у всех регуляторов одинаков. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.
Недостатком приведенного варианта подключения регулятора является то, что регулятор поддерживает напряжение на выводе "D+" генератора, а потребители, в том числе, аккумуляторная батарея, включены на вывод "В+". Кроме того, при таком включении регулятор не воспринимает падения напряжения в соединительных проводах между генератором и аккумуляторной батареей и не вносит корректировок в напряжение генератора, чтобы компенсировать это падение. Эти недостатки устранены в следующей схеме, где напряжение на входную цепь регулятора подается от того узла, где его следует стабилизировать, обычно, это вывод "В+" генератора.
10
Усовершенствованная схема стабилизации напряжения
Некоторые регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С.
Автор: Евгений Куришко
О том как проверить автомобильный генератор своими руками
Генератор играет в автомобиле очень важную роль, для двигателя он — вроде мини электростанции, которая снабжает всю бортовую сеть автомобиля, включая аккумулятор (АКБ). Неисправность генератора приведет к неминуемой полной разрядке АКБ, после чего двигатель вашего автомобиле просто перестанет работать, равно как и вся бортовая сеть. В итоге вам придется "прикуривать" свой автомобиль или искать новый источник энергии. Очень важно вовремя обнаружить неисправность генератора, для того чтобы не допустить вышеописанного сценария. Для того чтобы произвести диагностику генератора нужно обладать определенными навыками и инструментом. В этой статье я расскажу вас о том, как проверить генератор в домашних условиях при помощи мультиметра.
Для начала о мерах предосторожности и правилах безопасности во время проверки
Нужно быть предельно осторожным и понимать то, что делаешь, для того чтобы нечаянно не повредить генератор или его детали (реле регулятор, диоды выпрямительного моста).
Проверять работоспособность генератора путем проверки его «на искру», то есть методом короткого замыкания.
Соединять клемму «30» (иногда обозначаться как «В+») с клеммой 67 («D+») или «массой».
Допускать работу генератора при выключенных потребителях, например при отключении его от аккумуляторной батареи.
Проверять вентили генератора напряжением выше 12 В.
Можно и нужно:
Проверять исправность генератора при помощи вольтметра или амперметра.
Во время сварочных работ на кузове автомобиля необходимо отключать провода от генератора и АКБ.
Во время замены проводки в системе генератора провода должны иметь такое же сечение и длину как и «родные» провода.
Перед тем как проверить генератор убедитесь в правильном натяжении ремня генератора, а также исправности всех соединений и клемм. Нормальной считается натяжка ремня, при которой нажимая большим пальцем на середину ремня, он прогнется не больше чем на 10-15 мм.
Проверка генератора автомобиля своими руками
Чтобы проверить регулятор напряжения вам потребуется вольтметр со шкалой от 0 до 15 В. Прежде чем приступать к проверке дайте мотору поработать на средних оборотах при включенных фарах примерно 15 минут. Проверьте напряжение между «массой» генератора и выводами «30» («В+»), на вольтметре у вас должно быть нормальное для вашего автомобиля напряжение (для владельцев «девятки» например, нормальным считается напряжение — 13,5 – 14,6 В). Если напряжение выше или ниже установленного производителем — скорее всего придется заменить регулятор. Не лишним будет также проверить регулируемое напряжение, для этого подключите вольтметр непосредственно к клеммам АКБ. Правда, результаты такой проверки нельзя считать на 100% правильными, потому что есть вероятность проблем с проводкой. Если вы уверены в исправности проводки, тогда результатам можно доверять. Мотор должен работать на высоких оборотах, которые приближены к максимальным, фары и другие потребители электроэнергии автомобиля должны быть включенными. Размер напряжения должен совпадать с параметрами вашего автомобиля.
Диодный мост
Проверка диодного моста относится к комплексу проверок генератора. Для того чтобы проверить диодный мост подключите вольтметр или мультиметр к зажиму «30» («В+») генератора, а также к «массе», и включите прибор в режим измерения переменного тока. Переменный ток на диодном мосту не должен превышать 0,5 В, если у вас вышло больше — скорее всего диоды неисправны.
Проверка пробивания на «массу» не будет лишней в случае если "гена компостирует мозги". Для этого необходимо отключить аккумуляторную батарею и провод генератора, который идет к клемме «30» («В+»). После этого подключите прибор между клеммой «30» («В+») и отключенным проводом генератора. Смотрим на показания — если на приборе ток разряда превышает 0,5 мА, скорее всего есть пробой диодов или изоляции обмоток генератора.
Сила тока отдачи
Сила тока отдачи генератора проверяется при помощи специального зонда ("примочка" дополнение к мультиметру в виде зажима или клещей), которым провод охватывают, измеряя тем самым силу тока, идущего по проводу.
Для проверки тока отдачи нужно зондом обхватить провод, который идет к зажиму «30» («В+»).
Заведите двигатель – во время проведения измерения он должен работать на высоких оборотах.
Включайте по очереди электропотребители и считывайте показания прибора отдельно для каждого потребителя.
В конце измерений вам необходимо подсчитать сумму показаний. Далее, включите все потребители (которые вы включали поочередно) одновременно и произведите замер показаний мультиметра. Величина не должна быть меньше суммы показаний отдельно измеренных показателей, допустимое расхождение — 5 А.
Проверка тока возбуждения генератора выполняется посредством запуска двигателя и последующей его работы на высоких оборотах. После чего измерительный зонд помещается вокруг провода, ведущего к клемме 67 («D+»). Исправный генератор должен показать величину тока возбуждения — равную 3-7 А.
Проверка обмотки
Чтобы проверить обмотки возбуждения потребуется снятие регулятора напряжения, а также щеткодержателя. Если будет необходимость произведите зачистку контактных колец и проверьте обмотку на предмет отсутствия обрывов и замыканий на «массу». Проверять необходимо омметром, его щупы прикладываются к контактным кольцам, после чего снимаются показания. Сопротивление должно быть в пределах от 5 до 10 Ом. После подключите один электрод прибора к любому из контактных колец, а другой к статору генератора. На дисплее должна показываться бесконечно высокое сопротивление, в противном случае — обмотка возбуждения где-то замыкает на «массу».
Генератор переменного тока – устройство, принцип работы, применение, варианты подключения, виды
Электроэнергия используется повсеместно – от домашних электроприборов до сложных промышленных станков. Однако далеко не каждый знает, что за ее выработку отвечают специальные установки, преобразующие механическую энергию в электрический ток. Разберем, что собой представляет генератор переменного тока, из каких частей он состоит и по какому принципу работает, как применяется и по каким правилам подключается, а также на какие виды подразделяется.
Электрогенератор – устройство, принцип работы
Генератор представляет собой установку по выработке электрического тока путем преобразования механической энергии. Независимо от типа, конструкции и энергоресурса, заставляющего привод двигаться, все электрогенераторы работают в соответствии с законом электромагнитной индукции. При этом возможно 2 варианта взаимодействия:
- Через проводник пропускается вращающееся магнитное поле.
- В неподвижном магнитном поле вращается проводник.
На практике распространение получил первый вариант. Объясняется это, прежде всего, тем, что ток, получаемый от вращаемого проводника значительно меньше, тока, выдаваемого от неподвижной обмотки. Кроме того, снимать напряжение с неразрывной цепи легче, чем через систему щеток и колец подвижного ротора.
Электромеханический индукционный генератор переменного тока по сути состоит из того же, из чего сделан классический электродвигатель (иногда и внешне выглядит также) – неподвижной части или статора и вращаемого вала или ротора, также называемого якорем. При этом каждая его часть имеет свою функцию:
- Корпус или рама. К ней крепятся статорные обмотки, а также все остальные элементы механизма. Для обеспечения устойчивости и стабильности работы, а также защиты от внешних факторов кожух изготавливается из прочного толстостенного металла.
- Статор. На нем закрепляет обмотка, в которой под действием вращающегося электромагнита возникает электродвижущая сила. Изготавливается из ферромагнитного стального сплава.
- Ротор. По сути, представляет собой сердечник с обмоткой, посредством вала приводимый во вращение внешней механической силой. Назначение – создание вращающегося магнитного поля.
- Возбудитель. Это блок для питания электромагнита ротора постоянным электротоком.
Маломощные генераторы устроены без электромагнита в роторе – на его месте работает постоянный вращающийся магнит. Благодаря этому конструкция упрощается – кольца и щетки, необходимые для подачи напряжения на роторную обмотку, не применяются.
Механизм действия установки сводится к следующему:
- Вал ротора приводится во вращение внешней механической силой, например, двигателем внутреннего сгорания.
- При вращении ротора с сердечником, по которому движется постоянный ток, образуется переменное магнитное поле.
- Проникая в неподвижную статорную обмотку, оно создает электродвижущую силу.
- В результате на выходах из статора возникает переменный электрический ток.
Применение, варианты подключения
Впервые простейшие генераторы переменного тока стали использовать на электростанциях практически сразу после изобретения, когда устройство статора было несколько модернизировано, а принцип действия был приспособлен для промышленности. Произошло это в конце 19-го столетия. Сегодня электрогенераторы нашли более широкое применение:
- Электростанции общего назначения. ГЭС, ТЭЦ, АЭС и т. д. Выработка электроэнергии предназначается для оснащения объектов разного рода – дома, больницы, цеха и проч.
- Автоматические электрогенераторы. Предназначаются для производства электричества непосредственно на месте применения – например, на стройплощадке, на участке, где еще не подведена линия электропередач. В качестве источника энергии может использоваться различное топливо – бензин, дизель, газ.
- Автомобильные генераторы. Миниатюрные модели для оснащения автомобилей с целью питания местной электроцепи и подзарядки АКБ.
- Тяговые генераторы для обеспечения работы тепловозов.
Есть 3 варианта включения генератора в местную электросхему:
- Ручное. Самый простой способ эксплуатации, когда пользователь самостоятельно включает и выключает агрегат по мере надобности.
- Автоматическое. Установка оснащается блоком аварийного запуска. Как только внешняя сеть обесточивается, стартует генератор и начинает питать домашнюю электроцепь.
- Синхронное. Схема подключения одновременно нескольких работающих станций. Как правило, применяется на крупных объектах. Особенность системы – синхронная работа установок, вплоть до совпадения очередности фаз тока.
Виды и их особенности
Современные модели бытовых электрогенераторов классифицируются по 3-м признакам:
- Синхронности.
- Типу используемого топлива.
- Назначению.
Разберем их особенности более подробно.
Синхронные и асинхронные
В зависимости от того, какой принцип лежит в работе, агрегаты разделяются на 2 вида:
- Синхронные.
Главная специфика генераторов данного типа – прямая зависимость характеристик вырабатываемого тока от скорости вращения якоря. Благодаря этому возникает возможность точно задавать параметры выдаваемого электричества.
Работает по алгоритму:
- Ротор вращается от любого двигателя, например, турбины.
- На его обмотку подается постоянный ток.
- Возникающая при этом ЭДС генерирует переменное магнитное поле.
- Под его действием в статорной обмотке возникает ток.
Именно такого рода электрогенераторами оснащается большая часть электростанций.
- Асинхронные.
Асинхронный генератор переменного тока – это, по сути, асинхронный электродвигатель, так как оба относятся к однотипным статорно-роторным устройствам. При этом чтобы мотор заработал в качестве электрогенератора, потребуется увеличить скорость вращения якоря до нужного значения.
Недостатки данного типа агрегатов выражаются в необходимости возбуждать обмотку после подключения реактивной нагрузки – ввиду роста стартовой нагрузки и последующего провала мощности. Кроме того, требуется точно подобранный конденсатор. В противном случае ток будет меньше, чем необходим или установка будет перегреваться.
Вид топлива
Для получения вращающего момента применяется ДВС. В нем тепловая энергия от сжигания топлива превращается в механическую энергию, которая в свою очередь передается на вращение вала ротора. Для этой цели применяются следующие виды энергоресурса:
- Газ.
Особенности газовых агрегатов проявляются в следующем:
- Отсутствие загрязняющих окружающую среду выхлопов.
- Доступность и дешевизна топлива.
- Автоматическая подача и контроль уровня газа.
Недостаток выражается в необходимости обустройства отдельного теплого помещения под контролирующую аппаратуру. Более того, к газовому хранилищу предъявляются особые требования безопасности.
- Дизель.
Простейшие дизельные генераторы переменного тока имеют следующий ряд плюсов:
- Доступность и дешевизна энергоресурса.
- Пожаро-взрывобезопасность, что особенно актуально в сравнении с газовыми моделями.
- Длительная работа без остановок и аварий с одного запуска.
- Возможность оснащения автозапуском.
- Долговечность.
Проблема дизельных агрегатов выражается в затрудненном запуске на морозе.
- Бензин.
Преимущества бензиновых моделей выражаются в следующем:
- Малые размеры и вес установок.
- Доступность эксплуатации, обслуживания и ремонта.
- Оснащенность автоматической защитой.
- Минимальный уровень рабочего шума.
- Возможность использования в помещении.
Видео описание
Видео о том, что такое генератор и как он работает:
Главный минус проявляется в высокой цене топлива.
Назначение
По назначению электрогенераторы разделяются на 3 вида:
- Бытовые. В зависимости от цели использования в быту применяются установки мощностью от 0,6 до 25-27 кВт. Ими снабжаются приборы, работающие в доме, гараже, придомовых постройках и на участке. Такие модели также берутся и на стройплощадку, и на отдых на природе.
- Профессиональные. Мощность установок ограничивается номиналом в 100 кВт. Агрегат может использоваться на объектах как временно, так и постоянно.
- Промышленные. Для питания мощного цехового оборудования применяются агрегаты мощностью более 100 кВт. Характеризуются большими габаритами, весом и сложностью в обслуживании.
Видео описание
Видео-пример изготовления генератора из асинхронного двигателя:
Коротко о главном
Электрогенератор работает по закону электромагнитной индукции – когда при пропускании переменного магнитного поля через неподвижный проводник возникает ток. Состоит агрегат из вращающегося от внешнего привода ротора и неподвижного статора в виде обмотки, с контактов которой в итоге снимается электроток.
Применяются электрогенераторы в различных сферах – и в быту, и в промышленности. Подключаться они могут вручную, автоматически и синхронно. Классифицируются по нескольким признакам:
- Асинхронные и синхронные.
- Газовые, дизельные и бензиновые.
- Бытовые, профессиональные, промышленные.
В каждом случае генератор вырабатывает электричество заданных параметров в соответствии с целью применения.
Автомобильный статор генератора: описание, принцип работы и схема
Без электрооборудования не может «прожить» ни один современный автомобиль. И основным компонентом из всего электрооборудования является самый главный источник – генератор. В свою очередь, он содержит не менее важную составляющую, которая способствует зарождению электроэнергии во время движения автомобиля. Речь идет о статоре генератора.
Для чего он нужен, каково его предназначение и какие неисправности могут быть? Об этом и кое-чем еще поговорим в данной статье.
Электрооборудование автомобиля
Все электрооборудование любого автомобиля представлено следующими компонентами:
- Источники тока:
- аккумуляторная батарея;
- генератор.
- основные;
- длительные;
- кратковременные.
Задача аккумулятора заключается в обеспечении потребителей током, пока «отдыхает» двигатель, на время его запуска или работы в режиме малых оборотов. В то время как генератор, по сути, является основным поставщиком электроэнергии. Он не только питает все потребители, но и производит зарядку аккумулятора.
Его емкость в сочетании с мощностью генератора должна соответствовать запросам всех потребителей независимо от режима работы двигателя. Иными словами, должен постоянно поддерживаться энергетический баланс. Это важно знать, так как позволит понять, как работает статор генератора.
К основным потребителям принято относить систему топлива, включая впрыск, зажигание, управление, АКПП. У некоторых автомобилей присутствует электроусилитель руля. То есть все то, что постоянно использует ток, начиная от запуска двигателя и до его полной остановки.
Длительными потребителями являются системы, которые не используются слишком часто. А это освещение, безопасность (пассивная, активная), приборы отопления, кондиционирования. Большинство автомобилей комплектуются противоугонными системами, мультимедийным оборудованием и навигацией.
Что касается кратковременных потребителей, то это прикуриватель, система запуска, свечи накаливания, сигнал, а также системы комфорта.
Конструктивные особенности
Генератор присутствует в каждом автомобиле и состоит из следующих компонентов:
- статор;
- ротор;
- щеточный узел;
- выпрямительный блок.
И статор генератора, и все остальное собрано в относительно компактный модуль, который устанавливается в непосредственной близости от двигателя и работает от вращения коленчатого вала, для чего используется ременная передача.
Функциональное назначение
Статор является неподвижным элементом всей конструкции и закреплен на корпусе генератора. В свою очередь, в нем присутствует рабочая обмотка, и во время работы генератора именно в ней пробуждается электроэнергия. Однако такой ток носит переменный характер, а всем потребителям необходимо прямое напряжение. Преобразование (выпрямление так сказать) происходит как раз благодаря выпрямительному блоку.
Среди главных задач статора – несущая функция для удерживания рабочей обмотки. Также он обеспечивает правильное распределение силовых линий магнитного поля. В процессе работы генератора рабочая обмотка может сильно нагреваться. И тут вступает в силу другая не менее важная функция – отвод лишнего тепла от обмотки.
Как правило, во всех современных автомобилях используется однотипная конструкция статора.
Устройство статора
Конструкция статора генератора образована следующими составляющими:
- кольцевым сердечником;
- рабочей обмоткой;
- изоляцией обмотки.
Рассмотрим более подробно эти компоненты.
Сердечник. Это кольцевые пластины, на внутренней части которых имеются пазы для расположения обмотки. Соединение пластин очень плотное, и в совокупности они образуют так называемый пакет. Жесткость монолитной конструкции придается за счет сварки или клепки.
Для изготовления пластин используются специальные марки железа либо ферросплавы, которые отличаются наличием определенной магнитной проницаемости. Их толщина составляет от 0,8 до 1 мм. Для лучшего отвода тепловой энергии предусмотрены ребра, которые располагаются на внешней стороне статора.
Обмотка. Как правило, в автомобилях используется трехфазный генератор, где присутствуют три обмотки по одной на каждую фазу. Для их изготовления применяется медная проволока, которая покрыта изоляционным материалом. Ее диаметр равен 0,9-2 мм, а в пазах сердечника она укладывается особым образом.
Каждая из обмоток статора генератора ВАЗ (или любой другой марки) располагает выводом для снятия тока. Как правило, количество этих выводов не превышает 3 или 4. Однако встречаются статоры, у которых 6 выводов. При этом у каждой обмотки свое количество выводов для определенного типа соединения.
Изоляция. В каждом пазу сердечника располагается изоляция в целях защиты провода от повреждений. В ряде случаев в пазы могут укладываться специальные изоляционные клинья для более надежной фиксации обмотки.
Статор пропитывается эпоксидными смолами или лаками. Это делается в целях обеспечения целостности и прочности всей монолитной конструкции, что исключает сдвиг витков обмотки. Также повышаются электроизоляционные характеристики.
Как работает статор?
Принцип действия статора, а следовательно и всего агрегата (генератора), любого современного автомобиля основывается на одном явлении, которое знакомо каждому из нас со времен уроков физики. На них частенько упоминались такие понятия, как генератор, ротор, статор. Речь идет об электромагнитной индукции. Ее суть в следующем: когда какой-либо проводник перемещается в области действия магнитного поля, то в нем рождается ток.
Или этот проводник (статор) может находиться в переменном магнитном поле (ротор). Именно этот принцип используется в автомобильных генераторах. Во время запуска двигателя начинает вращение ротор генератора. Вместе с этим напряжение от АКБ доходит до рабочей обмотки. А поскольку ротор является многополюсным стальным сердечником, то при поступлении на обмотку напряжения он становится электромагнитом.
В результате вращения ротора создается переменное магнитное поле, силовые линии которого пересекают статор. И тут вступает сердечник «проводника». Он особым образом начинает распределять магнитное поле, и его силовые линии пересекают витки рабочей обмотки. И благодаря электромагнитной индукции возникает ток, снимаемый выводами статора. Далее полученное переменное напряжение поступает в выпрямительный блок.
Стоит только увеличить количество оборотов коленвала, ток частично от обмотки статора генератора поступает к обмотке ротора. Таким образом, генератор переходит в режим самовозбуждения, и ему уже не нужен сторонний источник напряжения.
Основные неисправности статора
Как правило, главные поломки статора — это:
- «Обрыв» рабочей обмотки.
- Наличие короткого замыкания.
Характерный признак, по которому можно судить о неправильной работе статора, это пропажа зарядного тока. На это может указывать не погасший индикатор разряда аккумулятора после запуска двигателя. Стрелка вольтметра при этом будет ближе к красной зоне.
При измерении вольтажа на АКБ, когда работает двигатель, напряжение будет меньше требуемого значения. Для самой батареи это не менее 13.6 В, а для генератора – 37.3701 В. Иногда в случае короткого замыкания на обмотках можно услышать характерный вой, издаваемый генератором.
В процессе эксплуатации автомобиля генератор может нагреваться и находиться под воздействием электрических нагрузок. Помимо этого, ему приходится работать в негативных условиях внешних факторов. Со временем это неизбежно приводит к ухудшению состояния изоляции обмоток, из-за чего случаются электрические пробои. Тогда решить проблему можно ремонтом (перемотка статора генератора) или полной его заменой.
Проверка исправности статора
Некоторых новичков все чаще волнует вопрос о том, как можно проверить, в рабочем ли состоянии находятся все детали генератора. Для этого понадобится специальное небольшое оборудование в виде мультиметра (в народе просто цешка). Можно использовать автотестер либо другой прибор, у которого есть режим омметра. В крайнем случае подойдет лампочка напряжением 12 В с припаянными к ней проводами.
Для начала стоит снять генератор с автомобиля и разобрать его. В зависимости от марки машины могут быть трудности, поскольку на некоторых моделях бренда Lexus источник тока находится в труднодоступном месте. Добравшись до статора и сняв его, необходимо провести чистку от грязи. Далее можно переходить к самой проверке.
Проверка на обрыв цепи
Как проверить статор генератора на обрыв? Для начала стоит перевести измерительный прибор в режим омметра, после чего подводим щупы к выводам обмотки. При отсутствии обрыва мультиметр будет показывать значения ниже 10 Ом. В противном случае показания будут стремиться к бесконечности. Таким образом, ток по обмотке не проходит, что говорит о наличии обрыва. Так нужно проверить все выводы.
В случае использования лампочки делаем проверку в следующей последовательности. Для начала соединяем проводом (лучше изолированным) минусовую клемму аккумулятора с одним из выводов обмотки. Плюс батареи подаем к другому выводу через лампу. Ее свет укажет на полный порядок, если же лампа не загорелась, значит, обрыву быть. Так нужно поступить с каждым выводом.
Проверка на КЗ
Теперь стоит проверить статор на короткое замыкание. В режиме омметра отрицательный щуп подносим к корпусу статора, а положительный – к любому из выводов рабочей обмотки. В норме показания должны стремиться к бесконечности. Повторить процедуру для каждого из выводов.
С лампочкой проверка статора генератора происходит таким образом:
- Минус АКБ соединяем проводом с корпусом статора.
- Плюсовая клемма подается на любой вывод через лампочку.
На короткое замыкание укажет горящая лампочка. Если же она не загорелась, значит, все в полном порядке.
Небольшое примечание
Перечисленные неисправности характерны не только для статора генератора, под сомнение могут попасть и регулятор напряжения, и диодный мост, и ротор генератора. При этом стоит заметить, что плохая работа именно статора встречается гораздо реже, чем у перечисленных компонентов любого генератора.
Поэтому, перед тем как заняться статором, необходимо провести проверку регулятора напряжения и диодного моста. И если они окажутся в полном порядке, то в последнюю очередь заниматься обмоткой.
Для надежной работы всего электрооборудования автомобиля следует проводить регулярное техническое обслуживание и при необходимости сразу заменять статор генератора. Цена в итоге покажется не такой высокой, как при замене всего генератора.
Что касается стоимости, то цены на новые детали начинаются с отметки в 1500 рублей с тремя выводами. Изделия с шестью контактами обойдутся дороже — в 6-7 тысяч рублей, хотя встречаются варианты подешевле. Однако все зависит от марки автомобиля.
Принцип работы и устройство современного автомобильного генератора
В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.
Функции генератора
При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).
Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.
Виды генераторов
Выделяют два вида автомобильных генераторов:
- постоянного тока;
- переменного тока.
Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:
- малая мощность и эффективность;
- необходимость в постоянном контроле и обслуживании;
- небольшой срок службы.
Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.
Устройство генератора переменного тока
Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.
Генератор состоит из следующих основных элементов:
- привод со шкивом, подшипниками и валом;
- ротор с обмоткой возбуждения и контактными кольцами;
- статор с сердечником и обмоткой;
- корпус, состоящий из двух крышек;
- регулятор напряжения;
- выпрямительный блок или диодный мост;
- щеточный узел.
Разберем каждый элемент устройства отдельно и подробно.
Корпус
В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.
В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.
Привод
Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.
Ротор
На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.
На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.
Статор
Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.
Выпрямительный блок или диодный мост
Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.
Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.
С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.
Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.
Регулятор напряжения
Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.
Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.
Щеточный узел
Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.
Принцип работы
Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.
Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.
В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.
Параметры генератора
Работу генератора оценивают по нескольким параметрам:
- номинальный ток и номинальное напряжение;
- номинальная частота возбуждения;
- частота самовозбуждения;
- коэффициент полезного действия (КПД).
Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.
Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.
Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.
На картинке ниже показана подробная схема подключения генератора в автомобиле.
Мощность автогенератора
Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.
Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.
Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.
По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.
Основные неисправности
Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.
Так как генератор автомобиля и аккумулятор работают неотъемлемо друг от друга, при неисправности любого из устройств загорится лампа разряда аккумулятора, а также может загореться индикатор “Check Engine”. Проверить состояние аккумулятора и диагностировать неисправность можно с помощью универсального автомобильного сканера Rokodil ScanX Pro.
На неисправность, связанную с генератором или плохим электрическим соединением в цепи управления часто указывают ошибки P0620 и P0622.
Механические неисправности
Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.
Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.
Электрические неисправности
Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.
Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.