Какие двигатели на самолетах
Перейти к содержимому

Какие двигатели на самолетах

  • автор:

Как устроена силовая установка пассажирского самолета

Всем привет. Недавно я читал ликбез очередному студенту на тему общего устройства оборудования самолёта. Вводный рассказ, хоть и отработанный до автоматизма, отнял пару часов времени и выявил необходимость ещё в двух-трёх вводных. Но лень — двигатель прогресса и я наконец дозрел до оформления всех этих «лекций» в печатном виде. А там, где есть внутренняя методичка, недалеко и до публикации на Хабре: вдруг, кому ещё интересно почитать будет.

Перед началом изложения хочу оговориться, что моя основная специализация — бортовое оборудование, так что из моего описания может вполне получиться «идеальный самолёт для технолога». Тех, кого этот подход не пугает, а также всех тех, кому интересно зачем в кабине экипажа нужны все эти кнопки и ручки — прошу оценить первую публикацию «Силовая установка».

Кликабельная картинка, чтобы рассмотреть получше:

Про силовую установку

Силовая установка — общее название двигателей летательных аппаратов. Начну с них потому, что без двигателей самолет — не самолет, а в лучшем случае планер. Цена двигателей, к слову, составляет половину стоимости авиалайнера и компетенциями в разработке современных гражданских авиадвигателей обладают гораздо меньше стран, чем тех, кто обладают компетенциями в разработке самолетов.

На авиалайнерах сейчас ставят почти исключительно двухконтурные турбореактивные двигатели (ТРДД). Вот принципиальная схема такого двигателя:

Детали устройства можно прочитать во многих источниках, начиная с Википедии. Для нас, электронщиков, важно понимать следующие факты о работе такого двигателя:

  1. Компрессор сжимает забираемый снаружи воздух перед подачей его в камеру сгорания,
  2. В камере сгорания к воздуху подмешивается топливо,
  3. В камере сгорания происходит постоянное горение топливовоздушной смеси, приводящее к тому, что разогретый газ расширяется в сторону турбины,
  4. Турбина крутится под воздействием расширяющихся газов и крутит компрессор и/или вентилятор,
  5. Как правило, в двигателях бывает две связки турбина-компрессор: высокого давления и низкого давления. Они могут крутиться независимо друг от друга,
  6. Основную тягу, как это ни странно, даёт не горячий газ, выходящий из сопла, а вращение вентилятора,
  7. Обороты и тягу двигателя можно регулировать подачей топлива,
  8. В большинстве современных авиационных двигателей работой двигателя управляет специальный компьютер FADEC . Этот прибор анализирует параметры работы двигателя, внешние условия и управляющие сигналы от органов управления двигателем и управляет всеми приводами, влияющими на работу двигателя, например, топливным краном. Часть названия «Full Authority» означает, что:
    • FADEC отвечает за ВСЕ аспекты работы двигателя,
    • Только FADEC отвечает за работу двигателя, т. е. нет никакого резервного контура управления, механических тяг управления газом и т. д.
  9. Кроме сигналов от органов управления двигателем FADEC анализирует данные от:
    • Системы воздушных сигналов (СВС): давление и температуру наружного воздуха, воздушную скорость самолёта — для уточнения параметров работы,
    • Датчиков обжатия шасси — для дополнительного контроля возможности включения реверса.

Как запускать двигатель

Чтобы запустить двигатель, надо раскрутить турбину высокого давления, подать топливо и дать первоначальную искру. После того, как турбина раскрутится примерно до 50% оборотов, двигатель начнёт раскручивать себя сам.

Первоначальную раскрутку двигателя можно осуществлять электрическим стартер-генератором (для маленьких двигателей) или специально поданным воздухом высокого давления от пневматической системы. К слову, воздух высокого давления в пневматической системе берется от второго (уже запущенного) двигателя, вспомогательной силовой установки (ВСУ) или внешнего источника.

Пример пульта управления, используемого для запуска двигателя:

Для автоматического запуска надо выполнить следующие действия:

  1. Переключатель «ENG START» (1) перевести в положение «IGN/ON»
  2. Тумблер «ENG MASTER» (2) перевести в положение «ON» (вперёд). В этот момент FADEC:
    • Откроет кран пневматической системы для раскрутки турбины и компрессора высокого давления
    • Откроет кран топливной системы — чтобы было чему гореть
    • Даст искру на свечи зажигания
  3. Контролировать процесс запуска. Если что-то пойдёт не так — немедленно перевести тумблер запуска обратно в положение OFF
  4. Когда двигатель успешно выйдет на обороты малого газа — запустить второй двигатель по аналогичной процедуре
  5. Когда оба двигателя запустятся — перевести тумблер ENG START в положение OFF — во время нормальной работы двигателя дополнительные искры на свечах зажигания не нужны
  6. Во время автоматического запуска двигателя кнопки ручного запуска (3) не используются

Как управлять двигателем

Управление двигателями осуществляется с помощью рычагов управления двигателями (РУД).

На каждый двигатель — свой рычаг. Тут всё просто: толкаем рычаг от себя — двигатель крутится быстрее, тяга растёт. Тянем рычаг на себя — крутится медленнее. Так как РУД не связан с топливным дросселем напрямую, можно не бояться, что мы сожжем двигатель большим количеством топлива или заглушим недостаточным. FADEC в любом случае не даст ему превысить предельную температуру выхлопных газов или заглохнуть. Кстати, с ограничением температуры выхлопных газов связан тот факт, что в жару и/или на высокогорных аэродромах двигатель может выдать меньшую тягу.

В районе «малого газа» у рычага упор. Чтобы разблокировать перевод рычагов в зону режимов реверса, надо потянуть за специальную скобу. При реверсе двигателя специальные створки разворачивают поток от вентилятора двигателя в обратном направлении, помогая самолету остановиться:

Вообще, с помощью реверса самолёт может даже поехать назад, но, так как в этом режиме для двигателей, висящих под крылом, возможна ситуация засасывания в двигатель мусора и даже камней с взлётно-посадочной полосы, для авиалайнеров не рекомендуется включать реверс на малых скоростях.

Для включения реверса FADEC анализирует не только положение РУДов, но и датчики обжатия шасси, так что случайно в воздухе запустить реверс невозможно.

Про индикацию и сигнализацию

Данные работы двигателей, как правило, отображаются на неотключаемой части центрального дисплея пилотов и на специальной странице с расширенными данными по двигателю.

В постоянно индицируемом окне статуса работы двигателя доступны следующие данные:

а. Текущие обороты вентилятора двигателя (напрямую влияют на тягу)
б. Температура выхлопных газов — параметр работы двигателя, часто ограничивающий максимальную тягу. FADEC ограничивает ток топлива в том числе, чтобы не расплавить конструкцию лопаток турбин. Лётчику тоже важно понимать, почему обороты не растут, хотя он «просит»
в. Заданные обороты вентилятора двигателя (разгон двигателя с малого газа до взлётного режима занимает десятки секунд и текущие обороты не всегда совпадают с заданными)
г. Обороты турбины высокого давления. Помните, что турбин две и они работают независимо? Так вот данные оборотов турбины высокого давления важны при запуске двигателя. В полёте контролировать их не надо
д. Текущий расход топлива
е. Признак включения реверса
ж. Установившийся режим работы двигателя (малый газ, взлётный, набор высоты)

На специальной странице дополнительных параметров работы двигателя может выводиться такая информация, например как:

  • Уровень, давление и температура масла,
  • Уровень вибрации двигателя,
  • Количество топлива, израсходованного с момента последнего запуска,
  • Давление воздуха в пневматической системе,
  • И т.д.

Варианты газотурбинных двигателей

Двигатели, в которых вентилятор вынесен за пределы мотогондолы (корпуса двигателя) называются турбовинтовыми. Они обладают лучшими взлетно-посадочными характеристиками, но быстро теряют эффективность при росте скорости больше 0.5 скорости звука (приблизительно). Поэтому они в основном применяются в самолётах для местных авиалиний и военно-транспортной авиации, где возможность использования коротких и неподготовленных взлетно-посадочных полос важнее, чем крейсерская скорость. В конструкции таких двигателей также часто применяется понижающая трансмиссия, как, например, на рисунке ниже.

Газотурбинные двигатели также используются на вертолётах, только в этом случае они крутят не пропеллер, а винт, сами двигатели в этом случае называются турбовальными. Хорошее видео, иллюстрирующее принципы их работы:

Ещё газотурбинные (турбовальные) двигатели ставят на танки (Т-80, Абрамс).
К преимуществам таких двигателей относят высокую удельную мощность, хороший запуск даже при низких температурах, возможность тянуть «с низов» — турбина высокого давления отделена от силовой турбины и двигатель не глохнет, когда гусеницы стоят неподвижно.
К недостаткам – высокую стоимость двигателя, сложность технического обслуживания, низкую приёмистость. По каждой из особенностей применения газотурбинных двигателей для танков есть разные полярные мнения, я же не специалист по танкам — не кидайте в меня камни. Я мог ошибиться. 🙂

Нелокализованный разлёт осколков

Одним из «свойств» двигателя, сильно влияющим на конструкцию бортового оборудования, является так называемый «нелокализованный разлёт осколков двигателя». Это событие возникает при взрывном разрушении двигателя, когда лопатки компрессоров и турбин разлетаются во все стороны.

При оценке последствий такого отказа, считается, что осколки обладают «бесконечной» энергией, которой достаточно, чтобы пробить любые преграды, разрубить любые трубы и провода. Для обеспечения безопасного завершения полета в случае такого нелокализованного разлета разработчики архитектуры электронного оборудования для каждого критического провода должны предусмотреть резервный, проложенный в отдельном канале, который не может быть перебит тем же осколком, что и основной провод.

Примечание для впечатлительных: на самом деле разработчики двигателей делают всё возможное, чтобы избежать нелокализованного разлёта, и действительно они случаются очень редко. Даже попадание крупной птицы в двигатель не сломает его. Но авиация — отрасль консервативная и мы закладываем в архитектуру противодействие всем потенциально возможным рискам.

Идеальный самолёт глазами инженеров. Лично мне взгляд технологов особенно симпатичен.

Авиа двигатели. Типы двигателей используемых в авиастроении

Именно благодаря использованию авиа двигателей, прогресс развития современной авиации продолжает развиваться. Первые самолёты которые не были оснащены двигателями практически не получили своего практического применения, так как не могли перевозить более одного человека, да и значительные расстояния преодолеваемые такими воздушными судами большими никак не назовёшь.

Все авиа двигатели принято разделять на 9 основных категорий.

  1. Паровые авиа двигатели;
  2. Поршневые авиа двигатели;
  3. Атомные авиа двигатели;
  4. Ракетные авиа двигатели;
  5. Реактивные авиа двигатели;
  6. Газотурбинные авиа двигатели;
  7. Турбовинтовые авиа двигатели;
  8. Пульсирующие воздушно-реактивные двигатели;
  9. Турбовентиляторные авиа двигатели.

Паровые авиа двигатели

Паровые авиа двигатели практически не нашли своего практического применения в авиации из-за низкого КПД своей работы. Главным принципом работы парового авиационного двигателя является преобразование возвратно-поступательного движения поршней во вращательное движение винтов за счёт энергии пара.

Стоит отметить, что первоначально паровые авиа двигатели предполагалось использовать на заре авиации, когда источник пара был наиболее доступным, однако из-за массивности своей конструкции паровые двигатели не смогли поднимать воздушные суда.

Поршневые авиа двигатели

Поршневой авиа двигатель представляет собой обычный двигатель внутреннего сгорания, в котором тепловая энергия расширяемого газа превращает поступательное движение поршня во вращательное движение винта. Такие авиа двигатели нашли своё применение, и применяются и по сегодняшний день из-за простоты своего функционирования и недорогостоящего изготовления.

КПД поршневого авиационного двигателя, как правило, не превышает 55 %, однако это ничуть не смущает современных авиаконструкторов, так как у этого двигателя имеется высокая надёжность.

Атомные авиа двигатели

Первые атомные авиа двигатели начали появляться в середине минувшего века, когда начались мирные исследования атома. Основным принципом работы атомного авиационного двигателя является осуществление контролируемой цепной ядерной реакции, что позволяло выдавать огромную мощность, при сравнительно небольшом уровне затрат.

Атомные авиа двигатели практически одновременно появились и в США и в СССР, однако сама идея того, что самолёт, пусть и с весьма компактным атомным реактором на своём борту может упасть и это впоследствии приведёт к катастрофе, заставила отказаться от этой идеи.

В США атомный авиационный двигатель применялся на самолёте Convair NB-36H, а в СССР на самолётах Ту-95 и Ан-22.

Ракетные авиа двигатели

Первые ракетные авиа двигатели появились в начале 40 годов прошлого столетия в Германии, когда немцы всеми усилиями пытались создать быстрый самолёт, который мог бы принести им победу во Второй мировой войне. Тем не менее, стоит отметить, что наука в те годы не позволяла совершить точный расчёт некоторых параметров, поэтому проект так и не был реализован. Впоследствии ракетные авиа двигатели испытывались исключительно с возможностью их применения для разгона самолётов в стратосфере, но применимость их весьма ограничена, и потому на сегодняшний день они практически не используются.

Основным недостатком ракетного авиационного двигателя является практически полное отсутствие управляемости на высоких скоростях.

Реактивные авиа двигатели

Реактивные двигатели весьма распространены на сегодняшний день в авиации и авиаконструкторском деле. Принцип работы этих авиа двигателей основывается на то, что необходимая тяга для воздушного судна создаётся за счёт преобразования в кинетическую энергию реактивную струи внутренней энергии авиационного топлива.

Реактивные двигатели весьма надёжны и эффективны и потому в ближайшее время стоит ожидать их дальнейшего совершенствования и развития.

Газотурбинные авиа двигатели

Принцип работы газотурбинного авиационного двигателя основывается на сжатии и нагреве газа, энергия которого впоследствии преобразуется в механическую работу, заставляя вращаться газовую турбину. Первые двигатели данного класса появились в Германии ещё в начале 40-х годов прошлого века, и на сегодняшний день они по-прежнему продолжают широко применяться в военной авиации, в частности устанавливаются на самолётах Су-27, МиГ-29, F-22, F-35 и т.д.

Газотурбинные авиа двигатели весьма эффективны на сравнительно небольших скоростях перемещения воздушных судов, и потому их применение в гражданской авиации также весьма обоснованно.

Турбовинтовые авиа двигатели

Турбовинтовые авиа двигатели представляют собой своеобразную разновидность газотурбинный авиационных двигателей, принцип действия которых основывается на том, что энергия горячих газов преобразуется во вращение винта, а около 10% от совокупной энергии превращается в толкающую реактивную струю.

Турбовинтовые авиа двигатели имеют хороший КПД и надёжны, что делает их эффективными и применимыми в гражданской авиации на многих воздушных судах.

Пульсирующие воздушно-реактивные авиа двигатели

Пульсирующие воздушно-реактивные двигатели не нашли применения в современной авиации из-за неудовлетворительной своей эффективности. Главной особенностью их функционирования является то, что работают они на принципе воздушно-реактивного двигателя. С той лишь разницей, что топливо в камеру сгорания подаётся периодически, создавая своеобразные импульсы, позволяющие двигать объект в заданном направлении.

Пульсирующие воздушно-реактивные двигатели эффективны лишь при однократном своём использовании, в последующих же случаях, их использование снижает и саму надёжность и увеличивает затраты.

Турбовентиляторные авиа двигатели

Принцип работы турбовентиляторных авиационных двигателей сводится к тому, что подаваемый за счёт вентилятора воздух. Обеспечивает полное сгорание топлива за счёт избытка кислорода, что делает такие авиа двигатели и более эффективными и в тоже время наиболее экологически чистыми. Применяются подобные турбовентиляторные авиа двигатели как правило на крупных авиалайнерах, так как практически всегда у них имеется большая конструкция за счёт необходимости нагнетания дополнительного объёма воздуха.

Как работает авиационный двигатель — простым языком. ⁠ ⁠

Как работает авиационный двигатель - простым языком. Самолет, Двигатель, Турбина, Авиация, Мотор

✈Самолетный двигатель является его сердцем. Не зря в песне поется «А вместо сердца пламенный мотор». В нем внутри действительно пламя и огромные температуры. То что вы видите под крылом это не турбина, а именно авиационный двигатель, а турбина — это его составная часть.

🔹Итак по порядку: Авиационный турбовентиляторный реактивный двигатель необходим для создания тяги, которая преодолеет сопротивление воздуха, сопротивление самолета и его частей. Разгонит самолет до скорости на которой вырастет подъемная сила, способная оторвать самолет от земли и унести его с полной загрузкой в небо.

🔹Передняя часть двигателя называется воздухозаборник. Воздух попадая в него уже начинает частично сжиматься, благодаря его форме.

🔹Далее воздух попадает на ступени вентилятора и ряд лопаток, где его давление и температура от сжимания начинает расти. Воздух дальше идет по двум контурам по внутреннему и внешнему. Внешний контур сжимает воздух только благодаря своей форме. Воздух, который пошел во внутренний контур все больше и больше сжимается проходя каждый ряд статичных и крутящихся лопаток. Они имеют определенную форму и сделаны из титана и жаропрочных материалов. Пройдя несколько ступеней компрессора низкого давления воздух попадает в компрессор высокого давления.Там он все более сжимается и его температура растет все больше и больше.

🔹И вот подогретый и сжатый воздух попадает в камеру сгорания, где он смешивается с топливом, которое впрыскивается туда через форсунки и поджигается с помощью факельного воспламенителя. В результате этого, резко растет тепловая энергия.

🔹Далее происходит следующее: разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее в вращение.Турбина сидит на одном валу с компрессором. В результате чего компрессор начинает вращаться и получается замкнутая цепь. Воздух вновь засасывается компрессором и процесс продолжается.Турбина низкого давления вращает компрессор низкого давления и вентилятор, а турбина высокого давления вращает компрессор высокого давления.

🔹Далее выходящие газы попадают в сопло и на выходе из него смешиваясь с воздухом с внешнего контура создают реактивную струю, которая и толкает наш самолет сквозь воздушную среду. Подобно тому, как струя воздуха толкает воздушный шарик, если его надуть и не завязывая отпустить.

🌀 Ну и у двигателя есть еще реверс, который изменяет направление этой струи на противоположное во время пробега самолета по ВПП. В результате самолет теряет скорость и пилоты применив тормоза останавливают многотонную машину.

8.6K постов 16.6K подписчиков

Правила сообщества

Короче говоря: двигло жрёт воздух, сжимает его, смешивает с топливом и высирает тугой струёй через жопу.

это ТРД (турбореактивный двигатель), авиационным двигателем может быть и электродвигатель, и поршневой, и хоть педали с ногами.

Иллюстрация к комментарию

Из чего делают лопасти турбин в камере сгорания? По сути там плавильная камера.

Bristol F.2B Fighter (1/72 Roden). Заметки по сборке⁠ ⁠

Bristol F.2B Fighter (1/72 Roden). Заметки по сборке Стендовый моделизм, Моделизм, Масштабная модель, Хобби, Миниатюра, Покраска миниатюр, Своими руками, Рукоделие с процессом, Рукоделие, Авиация, Самолет, Сборная модель, Аэрография, Обзор, Первая мировая война, Истребитель, Коллекция, Коллекционирование, Великобритания, Длиннопост

Приветствую, уважаемые подписчики, коллеги-моделисты и просто читатели! Работа на заказ для моделиста (любителя Первой Мировой и авто), потерявшего руку на известных событиях. Я уже делал ему триплан Фоккер Манфреда фон Рихтгофена, заказчик остался доволен. Но только Драйдеккер я собирал с нуля, а этот самолёт был уже частично собран и даже окрашен владельцем, то есть тут нужно было закончить модель. Ещё одно существенное преимущество немецкого триплана — он практически не имел расчалок, чего нельзя сказать о Бристоле. Я не умею с ними работать, и честно предупреждал заказчика, но он настоял. И ещё «за компанию» он попросил окрасить корпус советской металлической модельки (или игрушки?) машины Альфа Ромео Giulia SS. Эту покраску я тоже выложу здесь в качестве бонуса. Смотрим!

Bristol F.2B Fighter (1/72 Roden). Заметки по сборке Стендовый моделизм, Моделизм, Масштабная модель, Хобби, Миниатюра, Покраска миниатюр, Своими руками, Рукоделие с процессом, Рукоделие, Авиация, Самолет, Сборная модель, Аэрография, Обзор, Первая мировая война, Истребитель, Коллекция, Коллекционирование, Великобритания, Длиннопост

В таком виде мне досталась модель

О наборе: Набор 2003 года от украинской (г.Киев) фирмы Roden, выполненный по технологии литья под низким давлением. В компактной коробочке изначально лежали четыре литника из белого полистирола, декаль и инструкция. Мне же досталась примерно на 80% собранная и на 30% окрашенная кистью модель. В наборе было по моим подсчётам 102 детали, что весьма немало для своего масштаба. Качество литья на «троечку»: имеются участки замыленности и облой, следы стыковки пресс-формы, питатели доволно толстые и кое-где сильно портят детали. Я бы сказал «неплохо для ЛНД», если бы не имел несколько великолепнейших моделей от ModelSvit, выполненных по этой же технологии. Пластик хрупкий, обрабатывается и клеится легко. Детализация на достойном уровне: довольно подробно показан интерьер кабины и двигатель, неплохо передан рельеф полотняной обшивки, прекрасно выполнен пулемёт Льюиса. Расшивка тонкая и неглубокая, в некоторых местах сглажена — работать с ней неудобно. Стыкуемость, предсказуемо, невысокая. Очевидно, я не могу сказать о всей модели — большую часть сборки я не проводил, но судя по уже склеенным стыкам, там не всё шло гладко. Лично у меня возникло немало проблем с установкой верхнего крыла на 12 точечных опор. Набор имеет среднюю вариативности по сборке. Выбираем между двумя типами винтов и выхлопных труб, также есть возможность сделать модель с убранными панелями капота, чтобы было видно двигатель и носовой пулемёт. Фигур, подставок или прочих бонусов нет. Инструкция — небольшая, чёрно-белая, содержит весьма подробную статью о прототипе на украинском и английском языках, этапы сборки показаны нормально, но совершенно нет схемы натяжки расчалок, как будто производитель и не предполагает их делать в таком некрупном масштабе. Косвенно это подтверждается тем, что на коробке указан «уровень сложности 3» из 5 возможных, а с расчалками и тягами сложность взлетит в разы. Схемы окраски в инструкции чёрно-белые, самолёт показан с левого бока, а крылья сверху и снизу, ещё одна схема на задней стороне коробки цветная. Предлагаются целых семь вариантов.

Машина с боксарта — самолёт Эндрю МаКивера на октябрь 1918 года, основной цвет оливковый, капот серый, нижние поверхности цвета полотна, маркировка относительно скучная.

Первый вариант из инструкции — самолёт лейтенанта Гриффитса, окраска и маркировка очень похожи на предыдущую, только есть крупная надпись на правом борту.

Ещё один самолёт МакКивера, только более ранний — октябрь 1917 года. Отличается от того, что на бокс-арте удлиннёными выхлопными трубами и интересными тактическими обозначениями на бортах.

Самолёт из частей ПВО Великобритании, борт лейтенанта Тёрнера, имеет такую же окраску, но кругляши и маркировку на хвосте без белого цвета и изображение белого петуха на бортах.

Машина с Итальянского фронта, пилот майор Баркер, стрелок — принц Уэльский Эдвард (sic!) отличается двойной белой полосой вокруг корпуса и крупными литерами D на бортах и крыле. Также имеет четырёхлопастной винт.

Истребитель Австралийского Лётного Корпуса капитана Вильямса, отличается окраской. Нос и одна половина крыльев оливковые, вторые половины крыльев и остальной корпус белые, снизу также цвет полотна. Маркировка стандартная.

Ещё одна австралийская машина, пилот не указан. Имеет похожую окраску и маркировку, но только крылья оливковые с белыми элеронами.

Декаль нормального качества, несколько более ломкая, чем хотелось бы, но это может объясняться довольно длительным хранением. Цена набора мне доподлинно неизвестна, но я знаю, что Роден весьма недорог. Другое дело, что в некоторых странах цены на украинские модели взлетели на порядок, да и найти их можно далеко не во всех магазинах. Есть ли альтернативы сказать точно не могу, но мне на глаза не попадались. Модель однозначно не для новичков, какой бы уровень сложности ей не присваивал производитель. Однозначно радует детализация и обилие вариантов, но невысокое качество пластика требует определённой сноровки и крепости нервов.

Bristol F.2B Fighter (1/72 Roden). Заметки по сборке Стендовый моделизм, Моделизм, Масштабная модель, Хобби, Миниатюра, Покраска миниатюр, Своими руками, Рукоделие с процессом, Рукоделие, Авиация, Самолет, Сборная модель, Аэрография, Обзор, Первая мировая война, Истребитель, Коллекция, Коллекционирование, Великобритания, Длиннопост

Про машинку трудно что-то сказать, ибо мне принесли её в разобранном виде, к тому же не все детали. Металлический корпус, открываемые двери, капот и багажник, пластиковый салон. Между деталями щели, копийность никакая. Не знаю, уместно ли называть это моделью. Просто игрушечная машинка в масштабе 1/43. На днище написано Alfa-Romeo Giulia SS, Made in USSR.

Турбина всему голова

Существующие сегодня реактивные двигатели уже не считаются экономичными и удобными для использования и обслуживания, и несколько мировых компаний уже приступили к разработке новых типов силовых установок. Они должны стать легче, экономичнее и мощнее существующих сегодня двигателей пассажирских лайнеров.

Фактически отцом современных двигателей, устанавливаемых на транспортные и пассажирские самолеты, является советский конструктор Архип Люлька. В 1941 году он получил патент на изобретение турбореактивного двухконтурного двигателя, однако из-за Великой Отечественной войны построить прототип установки не успел. Первый двигатель такого типа в 1943 году испытали в Германии. От обычных реактивных двигателей, разработка которых началась чуть раньше, новые силовые установки отличались течением воздушных потоков по двум контурам.

Внутренний контур состоит из зоны компрессоров, камеры сгорания, турбины (газогенератор) и сопла. Во время полета воздух затягивается и немного сжимается вентилятором, самым большим винтом и самым первым по ходу полета. Затем часть этого воздуха поступает в компрессор и сжимается еще сильнее, после чего попадает в камеру сгорания, где смешивается с топливом. После сгорания горючего раскаленные газы вырываются из камеры сгорания и вращают турбину.

Турбина представляет собой жаропрочный воздушный винт, жестко посаженный на вал. Этим валом турбина связана с компрессорами и вентилятором на входе двигателя. После турбины реактивная струя попадает в сопло и истекает из него, формируя часть тяги двигателя. Вторая часть воздуха после вентилятора поступает в направляющий аппарат. Это такие вертикальные неподвижные лопатки. В этой части воздушный поток тормозится, из-за чего давление в нем повышается. После этого сжатый воздух сразу поступает в сопло и формирует остаток тяги.

Сегодня турбореактивные двухконтурные двигатели делят на два типа: с низкой и высокой степенью двухконтурности. Степень двухконтурности — это отношение объема воздуха за момент времени проходящего через внешний контур, то есть, минуя камеру сгорания, к объему воздуха, проходящего через внутренний контур, то есть газогенератор. Двигатели со степенью двухконтурности меньше двух традиционно ставятся на боевые самолеты, поскольку имеют небольшие размеры и большую тягу. Но они же расходуют много топлива.

Если у силовой установки степень двухконтурности больше двух, его принято называть турбовентиляторным реактивным двигателем. В такой силовой установке большая часть воздуха в полете проходит по внешнему контуру. На современных двигателях от 70 до 85 процентов тяги формируется именно вентилятором, в то время как внутренний контур используется лишь для привода дополнительных агрегатов, типа генератора, а также самого вентилятора и компрессоров.

В турбовентиляторных двигателях коэффициент полезного действия зависит от величины степени двухконтурности. Но увеличение двухконтурности приводит и к увеличению размеров двигателя, его массы и аэродинамических характеристик (большой двигатель имеет большое лобовое сопротивление). В целом же турбовентиляторный двигатель не может развивать скорость выше скорости звука, но имеет небольшой расход топлива, что как раз очень важно для пассажирских и грузовых перевозок.

Турбовентиляторные двигатели в гражданской авиации используются на протяжении последних нескольких десятилетий и зарекомендовали себя как надежные, относительно дешевые и экономичные силовые установки. Эти показатели разработчики из года в год стараются снизить, применяя все новые технические решения вроде саблевидных лопаток вентилятора, позволяющих сильнее сжимать воздух в зоне входа в компрессорную часть. Но эти решения не дают существенной экономии в расходе топлива.

Американский двигатель CFM56, устанавливаемый на самолеты нескольких типов компаний Boeing и Airbus, имеет степень двухконтурности 5,5 и удельный расход топлива в крейсерском режиме 545 граммов на килограмм-силы в час. Для сравнения, двигатель АЛ-31Ф истребителей Су-27 имеет степень двухконтурности 0,57 и удельный расход топлива в крейсерском режиме в 750 граммов на килограмм-силы в час и 1900 граммов на килограмм-силы в час на форсаже. Первый CFM56 расходовал чуть больше 700 граммов топлива на килограмм-силы в час.

Частичной экономичности новых турбовентиляторных двигателей конструкторы смогли добиться и за счет использования редуктора. Его установили между вентилятором и валом турбины, благодаря чему удалось избавиться от жесткой связки между горячей и холодной частями силовой установки. Кроме того, вентилятор и турбина стали работать в оптимальных друг для друга условиях. Но для существенной экономии конструкторы, помимо прочего, стали думать в сторону турбореактивных двигателей с ультравысокой степенью двухконтурности.

Ультравысокой, или сверхвысокой, степенью двухконтурности считается, когда объем воздуха проходящего за момент времени через внешний контур в двадцать и более раз больше объема воздуха, проходящего через внутренний контур. Так изобрели турбовинтовентиляторный реактивный двигатель. Он имеет два (иногда три) вентилятора, расположенных на одной оси и вращающихся в разные стороны. Лопатки таких вентиляторов имеют саблевидную форму, а сами роторы — изменяемый шаг.

Внешне турбовинтовентиляторные двигатели могут быть похожи на обычные турбовинтовые с воздушными винтами. Однако в новых силовых установках диаметр вентиляторов в среднем на 40 процентов меньше обычных воздушных винтов, а воздушный поток за лопатками вентилятора сжимается по разному. Например, в зоне воздухозаборника компрессорной части он, как и у турбовентиляторных двигателей, имеет большую степень сжатия.

Одним из примеров турбовинтовентиляторных двигателей является российский НК-93. Иногда его называют турбовинтовентиляторным реактивным двигателем с закапотированным ротором, или винтовентилятором. В нем винтовентилятор вместе с небольшим по длине внешним контуром забран в капот, специальную конструкцию, защищающую лопатки и упорядочивающую воздушный поток в полете. Такой двигатель примерно на 40 процентов экономичнее сопоставимого по мощности Д-30КП транспортного самолета Ил-76.

Сегодня разработка НК-93 приостановлена. Проект официально не закрыт, но будет ли он когда-либо завершен, не ясно. По разным данным, удельный расход топлива двигателем НК-93 в крейсерском режиме полета составил бы от 370 до 440 граммов на килограмм-силы в час. При этом до 87 процентов тяги будут формироваться именно винто-вентилятором. В третьей серии двигателей Д-30КУ-154 для Ил-76 удельный расход топлива удалось снизить до 482 граммов на килограмм-силы в час.

Тяга НК-93, по предварительным расчетам, должна была составить около 18 тысяч килограммов-силы. Для сравнения, тот же Д-30КУ-154 способен выдавать тягу в 10,8 тысячи килограммов-силы. Отчасти неудачи проекта НК-93 объясняются недофинансированием проекта, а также не совсем удачными испытаниями опытной модели, некоторые показатели которой оказались несколько выше расчетных. Кроме того, несмотря на свою эффективность и экономичность, НК-93 является двигателем очень крупным.

Между тем, в 2000-х годах Запорожское машиностроительное конструкторское бюро «Прогресс» разработало двигатель Д-27. Он относится к турбовинтовентиляторным реактивным двигателям с открытым винтовентилятором. Сегодня он является единственной в мире силовой установкой такого типа, выпускаемой серийно. Д-27 используется на перспективном украинском военно-транспортном самолете Ан-70. В этом двигателе поток воздуха создаётся двумя соосными многолопастными саблевидными винтами.

Тяга двигателя Д-27 составляет 13,1 тысячи килограммов силы, а удельный расход топлива в крейсерском режиме — около 140 граммов на килограмм-силы в час. Турбовинтовентиляторные двигатели с открытым ротором могут иметь немного различную конструкцию. Как правило, в них предусмотрено использование редуктора для привода винтовентилятора турбиной. Украинский двигатель в своей конструкции редуктор использует. Этот узел позволяет выставить оптимальные обороты для турбины и оппозитно-вращающихся роторов.

В Евросоюзе в настоящее время действует многолетняя программа разработки новых технологий для гражданской авиации, которые в целом должны будут сделать пассажирские самолеты будущего экономичнее, экологичнее, тише и комфортнее. Этот проект называется Clean Sky 2. В рамках этого проекта французская компания Snecma, входящая в холдинг Safran, приступила к сборке первого опытного образца турбовинтовентиляторного двигателя с открытым ротором. Испытания силовой установки состоятся до конца 2016 года.

Новый опытный двигатель на время проверок установят на пассажирский лайнер Airbus 340 на специальном подвесе в хвостовой части фюзеляжа. Перед летными испытаниями перспективный двигатель проверят на тестовом стенде на полигоне во французском Истре. Параметры перспективной силовой установки разработчики сравнивают с распространенными CFM56. Ожидается, что выбросы углекислого газа двигателя с открытым ротором будут на 30 процентов меньше, чем у CFM56.

Для сборки опытного образца двигателя Snecma намерена использовать газогенератор турбореактивного двухконтурного двигателя с форсажной камерой M88. Такими силовыми установками оснащаются французские истребители Dassault Rafale. С вала, раскручиваемого турбиной двигателя, через редуктор будет приводиться открытый винтовентилятор с роторами диаметром около 420 сантиметров. Лопатки вентилятора будут изменять угол атаки. Частота вращения винтовентилятора составит около 800 оборотов в минуту.

Для сравнения скорость вращения вентилятора двигателя CFM56 составляет 5200 оборотов в минуту в режиме полной мощности. Двигатель с открытым вентилятором, разрабатываемый Snecma, сможет развивать тягу в 111 килоньютонов (11,3 тысячи килограммов-силы). Идея французского двигателя базируется на американском GE36, разработка которого велась в 1980-х годах, однако из-за несовершенства материалов была закрыта. В частности, общей чертой для двигателей с открытым ротором является изогнутая форма лопаток.

Дело в том, что эффективность двигателя, в общих чертах, зависит от шага винта и скорости вращения. Чем эти показатели выше, тем быстрее полетит самолет. Однако при определенной скорости вращения вала наступает момент, когда скорость обтекания воздушным потоком законцовок лопастей приближается к сверхзвуковой. Из-за этого весь винт теряет эффективность. Изогнутая форма позволяет снизить частоту вращения вала и несколько уменьшить шаг винта, не потеряв в эффективности.

Разработчики рассчитывают, что новые турбовинтовентиляторные реактивные двигатели с открытым ротором будут в целом тише современных турбовинтовых и турбовентиляторных двигателей. Этого можно достичь за счет сдвига шума в более высокочастотную область, а высокочастотный шум, как известно, существенно более сильно спадает с увеличением расстояния до наблюдателя.

С каждым годом проектирование новых авиационных двигателей становится все более сложным. Времена, когда за счет использования нового принципа сжигания топлива или введения дополнительного воздушного контура можно было существенно повысить эффективность и экономичность конструкции, прошли. Теперь конструкторам уже приходится решать множество тесно связанных друг с другом задач и искать новые материалы для производства различных деталей двигателей.

Василий Сычёв

Чистка панелей без воды в перспективе поможет снизить затраты на обслуживание солнечных электростанций

Итальянская компания Reiwa Engine совместно с компанией Enel Green Power, занимающейся производством энергии из возобновляемых источников, разработала робота Sandstorm для сухой очистки панелей солнечных батарей, сообщает New Atlas. Он способен перемещаться по ряду солнечных панелей, даже если они установлены неровно, и преодолевает между ними промежутки до 50 сантиметров. При поддержке Angie — первого российского веб-сервера Песок, грязь и пыль со временем покрывают поверхность панелей солнечных батарей, чем существенно снижают их эффективность. Особенно это актуально для засушливой пустынной местности, которая из-за обилия солнечных дней в году хорошо подходит для строительства крупных солнечных электростанций. С учетом быстрого развития солнечной энергетики можно ожидать стремительного роста их количества, а это значит, что для решения проблемы очистки загрязненных панелей со временем будет требоваться все больше трудозатрат и ценных ресурсов, таких как вода, которую сегодня обычно используют для мытья панелей. Сицилийский технологический стартап Reiwa Engine совместно с энергетической компанией Enel Green Power разработал робота Sandstorm. Он предназначен для автономной сухой очистки солнечных панелей с помощью щеток. Для робота не требуется идеально ровной установки солнечных панелей, так как он способен преодолевать разницу в высоте и промежутки между панелями до 50 сантиметров (разработчики не уточняют, как именно это происходит). После окончания чистки или при низком заряде батареи Sandstorm самостоятельно возвращается к док-станции для подзарядки. Прототип сперва протестировали в лаборатории компании Enel Green Power, а затем на мегаваттной секции солнечной электростанции в муниципалитете Тотана в Испании. В результате компания заключила контракт на поставку 150 роботов для работы на двух испанских солнечных электростанциях Totana и Las Corchas, суммарная мощность которых составляет 135 Мегаватт. Необычный способ бороться с загрязнениями на поверхности солнечных батарей предложила компания Tesla, которая запатентовала метод очистки с помощью лазерных лучей. Авторы патента предлагают подбирать параметры лазерных импульсов так, чтобы они не проникали через слой стекла и не представляли опасности для электроники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *