Какие существуют способы пуска асинхронных двигателей при пониженном напряжении
Перейти к содержимому

Какие существуют способы пуска асинхронных двигателей при пониженном напряжении

  • автор:

Пуск асинхронного двигателя при пониженном напряжении на обмотке статора

Ограничение пусковых токов асинхронных двигателей путем понижения напряжения применяется в том случае, если пуск осуществляется без нагрузки.

В соответствии с формулой пусковой ток пропорционален подведенному напряжению. Уменьшение напряжения вызывает соответствующее уменьшение пускового тока.

Для уменьшения пусковых токов применяют схемы пуска при пониженном напряжении:

1. включением резисторов в цепь обмотки статора (рис. 9.13, а);

2. включением индуктивных сопротивлений в цепь обмотка статора (рис. 9.13, б);

3. включением обмотки статора через автотрансформатор (рис.9.13, в);

4. переключением обмотки статора со способа соединения фазных обмоток статора () «звезда» на «треугольник» (рис. 14.9 г).

Рис.14.9 Схемы пуска асинхронного двигателя при пониженном напряжении

В схеме на рис. 14.9, а при пуске замкнуты контакты линейного контактора КЛ, поэтому обмотка статора подключается к питающей сети через пусковые токоограничивающие резисторы СП. После того, как двигатель наберет обороты, а пусковой ток уменьшится до безопасных значений (обычно 2…2,5 номинального), схема управления замыкает контакты второго контактора – ускорения КУ, при этом двигатель подключается к сети «напрямую».

В схеме на рис. 14.9б для ограничения пусковых токов последовательно с обмоткой статора включены токоограничивающие рабочие обмотки дросселя насыщения Др. Его обмотка управления ОУ питается постоянным током через понижающий трансформатор Тр и выпрямитель Вп.

При пуске индуктивное сопротивление рабочих обмоток дросселя должно быть максимальным, поэтому ток в обмотке управления ОУ должен быть минимальным. Для этого ползунок резистора поста управления ПУ должен находиться в крайнем правом положении.

После пуска ток в обмотке управления ОУ постепенно увеличивают, для чего перемещают ползунок ПУ влево. Индуктивное сопротивление рабочих обмоток постепенно уменьшается.

Когда ползунок ПУ перемещен влево до упора, пуск закончен. При таком положении ползунка индуктивное сопротивление рабочих обмоток дросселя практически равно нулю, что равнозначно прямому подключению обмотки статора к питающей сети.

В схеме на рис. 14.9в использованы два контактора – регулировочный КЛ1 и линейный КЛ2, а также автотрансформатор АТр.. При пуске включается контактор КЛ1, при замыкании нижних контактов которого образуется нулевая точка «звезды» трех фазных обмоток автотрансформатора, а через верхние контакты подается питание питающей сети на верхние выводы этих обмоток.

В момент пуска ползунки автотрансформатора должны находиться в крайнем нижнем положении, при этом обмотка статора асинхронного двигателя закорочена через нижние контакты КЛ1, т.е. напряжение на ней равно нулю. Поэтому скорость ротора также равна нулю, ротор неподвижен.

Для пуска ползунки автотрансформатора постепенно перемещают вверх, при этом напряжение, снимаемое с обмоток автотрансформатора и подаваемое на обмотку статора, также постепенно увеличивается. Поэтому скорость двигателя увеличивается.

Пуск закончен, если ползунки автотрансформатора перемещены в крайнее верхнее положение. Когда на обмотку статора подается полное напряжение питающей сети, автотрансформатор не нужен.

В этот момент времени включается линейный контактор КЛ2 и отключается регулировочный КЛ1. При замыкании контактов КЛ2 обмотка статора двигателя подключается к питающей сети «напрямую», а при размыкании контактов КЛ1 автотрансформатор отключается от обмотки статора двигателя (он уже выполнил свою роль).

В схеме на рис. 14.9г использован линейный контактор КЛ и переключатель «звезда»-«треугольник» П. Для пуска включают линейный контактор КЛ, через замыкающиеся контакты которого напряжение питающей сети подается на верхние выводы обмотки статора двигателя АД. После этого переводят переключатель в нижнее положение «звезда». При этом нижние выводы обмотки статора соединяются вместе, в нулевую точку, обмотка статора соединена «звездой» и на статор двигателя подаётся фазное напряжение. В результате преключения с треугольника на звезду пуск приизводится при пониженном напряжении, что спообствует уменьшению пускового тока.

После того, как двигатель наберет обороты и перестанет увеличивать скорость, переключатель переводят в верхнее положение «треугольник». Двигатель с броском тока переключается со «звезды» на «треугольник», после чего разгоняется на «треугольнике» до скорости, зависящей от статического момента механизма.

Этот способ нашёл самое широкое применение на судах ввиду его простоты (не требуются резисторы, индуктивные сопротивления или автотранс­форматоры) и эффективности — пусковой ток уменьшается в 3 раза.

Все 4 рассмотренные выше схемы пуска при пониженном напряжении имеют один и тот же принципиальный недостаток: резкое уменьшение пускового момента двигателя, поскольку электромагнитный момент двигателя пропорционален квадрату напряжения.

2.11.2. Пуск при пониженном напряжении

Этот способ применяют при пуске в ход мощных двигателей, для которых недопустимо прямое включение в сеть. Для понижения подводимого к обмотке статора напряжения используют дроссели и понижающие автотрансформаторы. После пуска в ход на обмотку статора подается напряжение сети.

Понижение напряжения производят с целью уменьшения пускового тока, но одновременно происходит уменьшение пускового момента. Если напряжение при пуске понизить в раз, пусковой момент понизится в 3 раза. Поэтому этот способ пуска можно применять только при отсутствии нагрузки на валу, т.е. в режиме холостого хода.

Если, согласно паспортным данным, двигатель должен включаться в сеть по схеме треугольник, то для снижения пускового тока на время пуска в ход обмотку статора включают по схеме звезда.

Основные недостатки этого способа пуска: высокая стоимость пусковой аппаратуры и невозможность пуска с нагрузкой на валу.

2.11.3. Реостатный пуск асинхронных двигателей

Этот способ применяют при тяжелых условия пуска, т.е. при большой нагрузке на валу. Для реостатного пуска используют асинхронные двигатели с фазным ротором, в цепь ротора включается пусковой реостат. Реостатный пуск служит для увеличения пускового момента. Одновременно происходит уменьшение пускового тока двигателя. По мере разгона двигателя пусковой реостат выводится и после окончания пуска обмотка ротора оказывается замкнутой накоротко.

На рис. 2.19 приведена схема реостатного пуска (рис. 2.19.а) и механические характеристики (рис 2.19.б) при этом пуске.

В момент пуска в ход (рис. 2.19.а) в цепь ротора введен полностью пусковой реостат (Rпуск3=Rпуск1+Rпуск2), для чего контакты реле К1 и К2 разомкнуты. При этом двигатель будет запускаться по характеристике 3 (рис. 2.19.б) под действием пускового момента Mпуск. При заданной нагрузке на валу и введенном реостате Rпуск3 разгон закончится в точке A. Для дальнейшего разгона двигателя нужно замкнуть контакты К1, при этом сопротивление пускового реостата снизится до Rпуск2 и разгон будет продолжаться по характеристике 2 до точки B. При замыкании контактов К2, пусковой реостат будет полностью выведен (Rпуск=0) и окончательный разгон двигателя будет продолжаться по его естественной механической характеристике 1 и закончится в точке C.

Критическое скольжение равно:

для естественной характеристики Sкр1R2/X2;

Пусковой момент для искусственной характеристики можно рассчитать по формуле Клосса

Задаваясь необходимой величиной пускового момента, можно вычислить Sкр3 и величину пускового сопротивления

2.11.4. Использование двигателей с улучшенными пусковыми свойствами

Стремление совместить достоинства асинхронных двигателей с короткозамкнутым ротором (высокая надежность) и фазным ротором (большой пусковой момент) привело к созданию этих двигателей. Они имеют короткозамкнутую обмотку ротора специальной конструкцией. Различают двигатели с обмоткой ротора в виде двойной «беличьей клетки» (рис. 2.20.а) и с глубоким пазом (рис. 2.20.б).

На рис. 2.20 показаны конструкции ротора двигателей с улучшенными пусковыми свойствами.

У двигателя с двойной «беличьей клеткой» на роторе закладывается две короткозамкнутые обмотки. Обмотка 1 выполняет роль пусковой, а обмотка 2 является рабочей. Для получения повышенного пускового момента пусковая обмотка должна обладать большим активным сопротивлением, чем рабочая обмотка. Поэтому обмотка 1 выполняется из материала с повышенным удельным сопротивлением (латунь), чем обмотка 2 (медь). Сечение проводников, образующих пусковую обмотку, меньше, чем у рабочей обмотки. За счет этого повышается активное сопротивление пусковой обмотки.

Рабочая обмотка, расположенная глубже, охватывается большим магнитным потоком, чем пусковая. Поэтому индуктивное сопротивление рабочей обмотки значительно больше, чем пусковой. За счет этого в момент пуска в ход, когда частота тока ротора имеет наибольшее значение, ток в рабочей обмотке, как следует из закона Ома, будет небольшим и в создании пускового момента будет участвовать в основном пусковая обмотка, имеющая большое активное сопротивление. По мере разгона двигателя частота тока ротора падает, уменьшается и индуктивное сопротивление обмоток ротора, это приводит к увеличению тока в рабочей обмотке, за счет этого в создании вращающего момента будет участвовать, в основном, рабочая обмотка. Т.к. она обладает малым активным сопротивлением, естественная механическая характеристика двигателя будет жесткой.

Аналогичная картина наблюдается у двигателя с глубоким пазом (рис. 2.20.б). Глубокий стержень обмотки (1) можно представить в виде нескольких проводников, расположенных по высоте паза. За счет высокой частоты тока в обмотке ротора в момент пуска в ход происходит «вытеснение тока к поверхности проводника». За счет этого в создании пускового момента участвует только верхний слой проводников обмотки ротора. Сечение верхнего слоя значительно меньше сечения всего проводника. Поэтому при пуске в ход обмотка ротора обладает повышенным активным сопротивлением, двигатель развивает повышенный пусковой момент. По мере разгона двигателя плотность тока по сечению проводников обмотки ротора выравнивается, сопротивление обмотки ротора снижается.

В целом эти двигатели имеют жесткие механические характеристики, повышенный пусковой момент и меньшую кратность пускового тока, чем двигатели с короткозамкнутым ротором обычной конструкцией.

Пуск при пониженном напряжении

Пуск при пониженном напряжении применяется в асинхронных двигателях с короткозамкнутым ротором большой мощности, а также для двигателей средней мощности при недостаточно мощных электрических сетях.

Понижение напряжения достигают:

1) Переключением обмотки статора при пуске с нормальной схемы «треугольник» на пусковую схему «звезда».

В двигателях имеющих статорную обмотку соединённую по схеме “треугольник”, можно на время пуска эту обмотку включить на схему “звезда”.

В этом случае фазовое напряжение, подаваемое на обмотку статора, уменьшается в √3 раз, что обусловливает уменьшение фазовых токов в √3 раз и линейных токов в 3 раза. По окончании процесса пуска и разгона двигателя до номинальной скорости обмотку статора переключают обратно на “треугольник”. Такое переключение можно выполнить с помощью простого трёхполюсного переключателя или применить схему автоматизированного переключения. Недостатком этого способа является значительное снижение пускового момента (в 3 раза) поэтому его можно использовать только в тех случаях когда двигатель запускается только на холостом ходу. Кроме того этот способ применим только для двигателей имеющих рабочую схему “треугольник”.

2) Пуск с помощью активных или индуктивных сопротивлений

Этот осуществляется включением в цепь обмотки статора на период пуска добавочных активных или реактивных сопротивлений

При этом на указанных сопротивлениях создаются некоторые падения напряжения U, пропорциональные пусковому току, вследствие чего к обмотке статора будет приложено пониженное напряжение. По мере разгона двигателя уменьшается э. д. с., индуктированная в обмотке ротора, а следовательно, и пусковой ток. В результате этого уменьшается падение напряжения на указанных.сопротивлениях и возрастает приложенное к двигателю напряжение. Таким образом, при рассматриваемом способе пуска напряжение, приложенное к двигателю, автоматически растет по мере разгона ротора;

3) Подключением двигателя к сети через понижающий автотрансформатор.

Автотрансформаторный пуск, применяемая в тех случаях, когда момент сопротивления механизма при пуске значителен. Автотрансформатор может иметь несколько ступеней, которые в процессе пуска двигателя переключаются соответствующей аппаратурой. Преимуществом этой схемы в сравнении с другими пусками является больший пусковой момент при одинаковой степени снижения пускового тока Здесь вначале включаются контакторы Л и К, на зажимы АД подается пониженное.напряжение U2 автотрансформатора, и двигатель разгоняется. Затем контактор К отключается и АД оказывается включенным в сеть через индуктивное сопротивление части обмотки автотрансформатора. По истечении заданного промежутка времени включается шунтирующий контактор ШК и на двигатель подается полное напряжение сети U1

Недостатком всех указанных способов является значительное уменьшение пускового и максимального моментов двигателя, которые пропорциональны квадрату приложенного напряжения. Поэтому они могут применяться только при пуске двигателей без нагрузки.

Пуск асинхронных двигателей с короткозамкнутым ротором при пониженном напряжении

В тех случаях, когда из-за большого падения напряжения в сети прямой пуск для короткозамкнутых двигателей недопустим, применяют подключение их обмоток статора в первый момент пуска на пониженное напряжение, при этом пусковой ток уменьшается, что приводит к снижению падения напряжения в сети. Недостатком такого способа пуска является снижение начального пускового моментапропорционально квадрату напряжения. Поэтому этот способ пуска применяется в тех случаях, когда отсутствует нагрузочный момент на валу или когда этот момент невелик. Для снижения подводимого к статору двигателя напряжения используются следующие схемы: пуск через реактор, пуск через автотрансформатор, переключение со звезды на треугольник.

Рис. 5.2. Пуск асинхронного двигателя через реактор

Пуск через реактор (рис. 5.2) производится при включении выключателя Q1 и выключенном Q2. Из-за падения напряжения в реакторе LR напряжение на выводах обмотки статора уменьшится до значения U1. Пропорционально уменьшится и начальный пусковой ток

где 1п ном — начальный пусковой ток при номинальном напряжении U1ном на выводах статора (при прямом пуске).

Начальный пусковой момент при этом будет равен:

где Мп ном — начальный пусковой момент при напряжении U1ном.

Когда ток спадет, включают выключатель Q2, которым закорачивается реактор LR. Сэтого момента к обмотке статора подводится полное напряжение сети, при котором будет протекать дальнейшая работа двигателя. Напряжение U1 выбирают обычно равным 0,65 U1ном.

При пуске через автотрансформатор для одного и того же снижения напряжения на выводах двигателя уменьшение тока, потребляемого из сети, происходит более резко, чем при пуске через реактор. Это является достоинством пуска через автотрансформатор, однако эта схема дороже схемы пуска через реактор.

Пуск переключением со звезды на треугольник применяется в том случае, если данному напряжению сети соответствует схема соединения обмотки статора треугольником. Тогда, если при пуске этого двигателя обмотку статора пересоединить в звезду и включить ее в ту же сеть, напряжение на фазу снизится в √3раз, что приведёт к уменьшениюначального пускового тока.

После того как двигатель разгонится, обмотку статора включают в треугольник. При этой схеме будет происходить работа двигателя.

Применением переключения со звезды на треугольник удается снизить начальный пусковой ток в 3 раза 1пД /1пУ = 3.

При этом начальный пусковой момент снижается пропорционально квадрату отношения фазных напряжений, т. е. также в 3 раза. Этот способ пуска иногда применяется при пуске низковольтных двигателей большой мощности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *