Форсунки. Часть 1, теоретическая: Обучение малому впрыску, корректировки
У нас и у эльководов регулярно публикуются отчеты вида: "Провел обучение малому впрыску, такие цифры корректировок — это хорошо или плохо?" В поисках ответов на вопрос, я прочитал различные документы от Denso, плюс накопилось некоторое количество экспериментальных данных по двум комплектам форсунок. Результатами хочу поделиться в этом отчете. Отчет я разделил на две части — теоретическую и экспериментальную. В этой, теоретической, некий обзор про обучение и корректировки. В экспериментальной выложу хронику корректировок по двум комплектам форсунок, с отчетом по диагностике и замене: где-что-почем: Форсунки. Часть 2, практическая: Диагностика на стенде, замена, обучение малому впрыску
Обучение малому впрыску
Зачем нужно обучение малому впрыску? Что именно значат и как используются корректировки малого впрыска? Рекомендую почитать сервис мануал от Denso: Operation. Common Rail System, часть информации я взял из него.
Проблема первая. Чем выше давление в топливной рампе, тем быстрее, а значит больше и/или в наиболее оптимальный момент времени можно подать топливо в цилиндр. На нашем моторе 4D56U рабочий диапазон давлений в рампе составляет от 30MПа (300атм) на холостом ходу до, в теории, 180МПа (1800атм) при максимальной нагрузке, хотя я не наблюдал значений выше 160МПа даже при пиковых нагрузках. С другой стороны, большое давление в системе создает следующую проблему: От момента начала подачи топлива в цилиндр до момента воспламенения смеси проходит некоторое время, сократить которое нельзя конструктивно. Чем выше давление топлива в системе, тем больше топлива успевает поступить в цилиндр за этот промежуток времени, и тем взрывообразней происходит воспламенение топлива. По официальной версии Denso, работа в таком режиме сопровождается увеличенным выбросом NO и неприятным "детонационным" звуком. Не удивлюсь, если кроме звука с мотором приключается какая-нибудь более серьезная незадокументированная печаль )
Что такое хорошо, что такое плохо. Картинка из мануала Denso
Для решения этой проблемы за некоторое время до основного впрыска в цилиндр подается небольшое количество топлива — предварительный впрыск (pilot injection). В таком режиме импульс основного впрыска уже не вызывает взрывной рост давления с его негативными последствиями. В некоторых моторах предварительный впрыск осуществляется в виде нескольких импульсов.
Предвпрыск. Картинка из мануала Denso
Проблема вторая. Даже новые форсунки сходят с конвейера с индивидуальными особенностями, влияющими на их фактическую подачу топлива. То есть, подключив новые форсунки к стенду с заданным фиксированным давлением топлива и подав на них одинаковые управляющие импульсы, даже новые форсунки в общем случае выдадут разное количество топлива. Поэтому форсунки калибруют еще на заводе: измеряют фактическую подачу форсунки в нескольких режимах, и сравнивают с эталонной подачей, которая ожидается от форсунок в этих режимах.
QR коды форсунок. Картинка из мануала Denso
Именно эти отклонения от эталонной подачи зашифрованы и нанесены в виде цифрового и QR кода на разъемах наших форсунок. Данный код прописывают в энергонезависимую память блока управления (ECU) для каждой форсунки на заводе или при замене/ремонте форсунок. Опираясь на данные в этом коде ECU определяет на сколько именно необходимо открыть каждую форсунку с учетом ее индивидуальных особенностей, чтобы подать в цилиндр расчетное количество топлива.
Третья проблема. Общий объем топлива подаваемый в цилиндр на нашем моторе 4D56U составляет: на холостом ходу — 6-8мм3/р.такт, в режиме средней нагрузки — 40-50 мм3/р.такт, в пиковой нагрузке — 90-100мм3/р.такт. Типичный объем предвпрыска составляет 2.0-2.5 мм3 на один рабочий такт. Если даже заранее откалибровать столь малый объем подачи на заводе при изготовлении форсунки и затем внести поправки в ECU, они достаточно быстро "поплывут" в ходе эксплуатации форсунки из-за износа и загрязнения. Если фактический объем топлива предвпрыска будет некорректным, то вернется первая проблема: при переподаче топлива будет "греметь" и отравлять экологию уже сам предвпрыск, при недоподаче снова "загремит" основной впрыск. Снимать и калибровать форсунки каждые N километров на стенде — дорогое удовольствие. Для решения этой проблемы инженеры Denso придумали некий обходной маневр — процедуру обучения малому впрыску.
Допустим у нас есть мотор, работающий на холостом ходу без полезной нагрузки. Все форсунки подают топливо в строгом соответствии с таблицами, прописанными в ECU и их индивидуальными корректировками (кодами), сам мотор создает строго нормативную нагрузку (трение, генератор, итд). Тогда корректировки подачи топлива вообще не потребуются – такой идеальный мотор будет работать с заданными оборотами ХХ. Со временем из-за износа или загрязнения форсунки начнут подавать количество топлива, не соответствующее расчетному. Из-за этого обороты двигателя будут ниже или выше заданных оборотов ХХ. Для приведения скорости вращения коленвала к заданной потребуется откорректировать общую подачу топлива путем изменения длительности открытия форсунок. Этот эффект и используется при обучении малому впрыску. То есть при обучении в роли калибровочного стенда выступает сам мотор, а ECU подбирает значения корректировок, добиваясь равномерного вращения коленвала на холостом ходу с заданной частотой.
Вроде все просто. Но мотор то тоже неидеальный. Вряд ли есть два мотора, полностью одинаковых по внутренним потерям (трение, компрессия), плюс может возникнуть дополнительная нагрузка (генератор, ГУР, ваккумник). Эти потери/нагрузка потребует дополнительного количества топлива, которое тоже учтется в проведенной ECU корректировке продолжительности впрыска. Но нам для корректировки предварительного впрыска нужна только та часть, которая компенсирует особенности подачи форсунок и не нужна часть корректировки, обусловленная дополнительной внешней нагрузкой или отсутствием масла индивидуальными особенностями мотора. Нагрузочную часть корректировки необходимо как-то исключить. Denso придумала и запатентовала следующее решение patents.google.com/patent/US6694945. В процессе обучения малому впрыску на холостом ходу на форсунки подается серия из нескольких одинаковых импульсов.
Обучение малому впрыску, серия из N импульсов. Картинка из мануала Denso
"Форсуночная" составляющая корректировки, обусловленная индивидуальными изменениями характеристик форсунок, постоянна для каждого импульса и не зависит от числа импульсов в серии. То есть если форсунка "тормозит" при открытии на 10 микросекунд относительно новой, она будет это делать одинаково на каждом импульсе в серии. "Нагрузочная" составляющая корректировки наоборот будет убывать обратно пропорционально числу импульсов в серии, так как дополнительный объем топлива, обусловленный доп. нагрузкой, не зависит от числа импульсов, и ECU распределит его равномерно по всем импульсам в серии. За счет разного характера зависимости от числа импульсов в серии, проведя измерения при разном числе импульсов в серии, можно отделить форсуночную составляющую от нагрузочной. Забегая вперед, в практическую часть, я провел следующий эксперимент: выполнил обучение с включенными доп. потребителями (свет, моторчик печки) и без них — корректировки в пределах погрешности не изменились. То есть при обучении малому впрыску дополнительная нагрузка действительно "отфильтровывается". Главное, чтобы эта доп. нагрузка была постоянной — не менялась в процессе обучения. Поэтому кондей, музыку и другие "нестабильные" потребители необходимо выключить.
Значения корректировок малого впрыска у одной отдельно взятой форсунки будут разными при разных давлениях топлива. В общем случае, чем выше давление при обучении — тем меньше длительность импульса, а значит меньше (по модулю) и сама корректировка этого импульса. Поэтому процедуру обучения проводят при различных значениях давления в топливной рампе. На нашем моторе процедура обучения выполняется для пяти базовых значений давлений: 30, 60, 90, 120 и 150 МПа. Величина корректировок для промежуточных давлений в рабочих режимах определяется интерполяцией.
Значения корректировок малого впрыска. Скриншот из программы NMPS Diag
Сама процедура обучения запускается либо "вручную", командой по OBD разъему, либо автоматически по достижению критериев: превышению пробега с момента предыдущего обучения или некорректной работе мотора. По завершении обучения корректировки сохраняются в энергонезависимую память ECU и не меняются до успешного завершения следующей процедуры обучения. Учет значений корректировок ведется в виде миллисекунд. В рабочих режимах двигателя ECU применяет данные корректировки с поправочными коэффициентами к длительности импульса предварительного впрыска.
Корректировки основного впрыска
Перед экспериментальной частью стоит еще затронуть тему корректировок основного впрыска и диагностки по ним. На эту тему есть хорошая статья на дизельном форуме.
При работе мотора в реальных условиях нагрузка на мотор варьируется даже в режиме ХХ. Например, если включить ближний свет, это будет стоить папаше Дорсету еще 500$ около 1.5мм3 топлива на рабочий такт. ECU должен уметь корректировать подачу топлива для компенсации этой доп нагрузки на холостом ходу. За это отвечает логический модуль Idle Speed Control (ISC). Идея проста — добавлять или убавлять объем впрыскиваемого топлива пока усредненные обороты ХХ не совпадут с требуемыми. Похоже на обучение малому впрыску, но вместо "учебной" серии из N импульсов на форсунки уже идут "боевые" двойки импульсов предвпрыск + основной впрыск. В данном примере ISC подаст дополнительный объем топлива 1.5мм3/р.такт, то есть по каждой форсунке будет плюсовая корректировка +1.5мм3. Это уже достаточно большое количество, сравнимое с объемом предварительного впрыска. ECU распределяет эту корректировку между основным и предварительным впрыском: основная доля корректировки добавляется к объему основного впрыска и лишь небольшая часть – к объему предварительного впрыска.
Допустим в нашем моторе форсунки в режиме ХХ подают избыточное количество топлива, не соответствующее их калибровкам (переливают). Тогда ISC подберет корректировку равную разности между топливом требуемым дополнительной нагрузкой и избыточным, неучтенным, количеством топлива, подаваемым форсунками. Например, если на холостом ходу все форсунки переливают на 2мм3/р.такт и доп нагрузки нет, то корректировка ISC составит ‑2мм3/р.такт. При включении доп нагрузки 1.5мм3/р.такт суммарная корректировка составит ‑0.5мм3/р.такт. Отслеживая параметр корректировки ISC или изменение суммарной подачи топлива на ХХ можно сделать некоторые выводы о состоянии форсунок. Отрицательная корректировка ISC, или внезапно уменьшившийся общий объем топлива, рассчитанный ECU “к подаче”, на холостом ходу — признак льющих форсунок. С плюсовой корректировкой или увеличившимся объемом топлива на ХХ не все однозначно — это могут быть и загрязненные форсунки и доп. нагрузка на мотор.
Усложняем задачу. Допустим у нас в моторе две форсунки подают топливо в строгом соответствии с их индивидуальными калибровками, а две форсунки изношены и в режиме ХХ переливают топливо в количестве 2мм3 на рабочий такт каждая. В предыдущем примере дополнительная нагрузка в виде включенного света потребует 1.5мм3/р.такт * 4р.такта = 6мм3 доп. топлива на два оборота коленвала . Две льющих форсунки за эти два оборота КВ подадут 2мм3/р.такт * 2р.такта = 4мм3 лишнего топлива. Модулю ISC останется подать дополнительные 2мм3 топлива чтобы привести обороты КВ к заданному значению ХХ, или 2мм3 / 4 р.такта = +0.5мм3/р.такт в пересчете на каждую форсунку.
Но мотор при этом будет работать не равномерно. По-прежнему в два цилиндра с льющими форсунками будет поступать топлива на 2мм3/р.такт больше, чем в два других цилиндра с нормальными форсунками. Из-за этого скорость вращения коленвала во время рабочего такта у цилиндров с льющми форсунками будет выше. Для компенсации этого явления создана логический модуль Fuel Control for Cylinder Balance (FCCB). Он подбирает поцилиндровые корректировки подачи топлива для достижения одинаковой скорости вращения коленвала по всем цилиндрам, без изменения общего, суммарного объема подаваемого топлива. То есть FCCB перераспределяет (балансирует) общий подаваемый объем топлива между цилиндрами. В данном случае для достижения равномерного вращения КВ, а значит и одинаковой фактической подачи топлива, надо перекинуть подачу 1мм3/р.такт с льющих на нормальные форсунки. Поцилиндровые корректировки FCCB составят: #1 +1.0 | #2 +1.0 | #3 -1.0 | #4 -1.0 мм3/р.такт, плюсовые корректировки — по нормальным форсункам, минусовые — по льющим. Итоговая суммарная поцилиндровая корректировка ISC+FCCB составит #1 +1.5 |#2 +1.5 |#3 -0.5 |#4 -0.5 мм3/р.такт.
А что если корректировать подачу топлива поцилиндрово не только на холостом ходу а и в нагруженных режимах, уравнивая скорость вращения коленвала на рабочих тактах? Например у нас три форсунки под нагрузкой подают расчетные 40мм3/р.такт, а четвертая по факту льет все 50мм3/р.такт. Тогда корректировки FCCB составят #1 +2.5 |#2 +2.5 |#3 +2.5 |#4 -7.5 мм3/р.такт. Получили "бесплатный" инструмент для диагностики состояния форсунок на моторе под нагрузкой, без необходимости снятия форсунок на стенд. Но есть ситуации, которые мы не отловим этим инструментом: например, если все форсунки одинаково переливают под нагрузкой, и при этом укладываются в норму на ХХ, то есть не выдадут себя ни межцилиндровой корректировкой, ни минусовой корректировкой ISC на ХХ. Также при проблемах с компрессией в одном из цилиндров по этому цилиндру будет плюсовая коррекция, которая сложится с корректировкой, обусловленной состоянием форсунки.
В ряде электронных систем управления параметры суммарной корректировки топлива на ХХ (ISC) и межцилиндровой корректировки (FCCB) на ХХ можно мониторить в диагностических целях. Например у TLC на моторах 1GD-FTV, 1KD-FTV — это параметры Injection Feedback Value for Idle и Injection Feedback Value #. В некоторых системах, например BMW, межцилиндровую корректировку можно мониторить и под нагрузкой, параметр selective mass adjustment.
Selective mass adjustment. Скриншот INPA Loader, взят с просторов интернета (bmwclub.by)
А теперь плохая новость: Все это — не про наш мотор 4D56U. По крайней мере я не нашел каких-либо упоминаний о поцилиндровой корректировке в режиме нагрузки, равно как и PID’ов для мониторинга поцилиндровых корректировок хотя бы на холостом ходу. Все что у нас есть — это значения корректировок малого впрыска. Можно ли как-то оценить состояние форсунок с помощью них — в следующем отчете.
Краткие итоги
При обучении малому впрыску ECU подбирает значения корректировок малого (1-2мм3) впрыска, используя в качестве калибровочного стенда сам мотор. Данные корректировки необходимы ECU для подачи точного количества топлива в импульсе предварительного впрыска. Корректировки компенсируют изменения характеристик форсунок, возникающие со временем из-за износа и/или загрязнения.
Кроме корректировок малого впрыска в некоторых системах управления применяются общие и поцилиндровые корректировки основного впрыска, измеряемые в режиме ХХ и/или под нагрузкой. Данные корректировки можно использовать для предварительной диагностики состояния форсунок. В ECU двигателя 4D56U данный тип корректировок отсутствует / недоступен для мониторинга.
Выражаю благодарность Эдуарду napic за ответы на ряд вопросов при подготовке отчета.
что такое предвпрыск форсунки common rail на дизеле
Что раньше выдавало автомобиль с дизельным двигателем среди бензиновых одноклассников?! Речь идет о первых поколениях топливной аппаратуры. Повышенная шумность работы для кого-то были критерием при покупке авто, а для прежних дизелей это была общеизвестная проблема.Так откуда же брался этот шум и жесткая работа двигателя? Всё дело в том, что при такте сжатия в цилиндре во время впрыска на встречу поршня резко повышается давление, отсюда берутся повышенные вибрации и шумность. Следовательно, для того чтобы понизить эти неприятные показатели нужно каким либо образом сгладить это резкое повышение давления, для этого было решено перед основным впрыском подавать в камеру сгорания маленькую порцию топлива, которая моментально сгорала и повышала давление в камере, а так же температуру. Тем самым идущая следом большая порция, во-первых, не создавала излишних вибраций, а во вторых благодаря более прогретой воздушной смеси могла полностью сгореть, отдав весь свой энергетический потенциал. Это и называется предварительным впрыском топлива. В итоге были сильно увеличены топливно — экономические характеристики дизеля, за счет более полного сгорания смеси, а так же значительно снижены шум и вибрация двигателя
ДВС и его виды. Часть 8. Продолжение про ТНВД и Common Rail
Среди механических форсунок есть одна их интересная разновидность. Это двухпружинные форсунки, и главная их особенность — осуществление предвпрыска топлива.
В их конструкции предусмотрено две пружины. Первая отвечает за давление начала предвпрыска, при достижении которого игла преодолевает давление более слабой пружины и приоткрывается на 0.01-0.03мм, осуществляя начальный впрыск небольшой порции топлива. При достижении номинального давления топлива, игла своим уступом, уперевшись в шайбу основной пружины и преодолевая суммарное сопротивление двух пружин открывается на полный впрыск. На картинке последовательно изображены эти этапы. И да, это совсем не коммон рейл и даже не его подобие) Данная схема позволяет значительно повысить плавность работы моторов с непосредственным впрыском, так как предвпрыск позволяет заранее плавно поднять давление в цилиндре, снизив ударное действие при впрыске основной порции топлива.
Такие форсунки часто оснащаются распылителями хитрой конструкции, благодаря которой игла в двух положениях открывает разное количество дюз, для сохранения качественного распыления топлива при низком давлении топлива в первой фазе впрыска.
С механическими форсунками закончили, переходим к механическим ТНВД.
ТНВД бывают трех основных типов.
1. Рядные, к которым мы отнесем одиночные, рядные и V-образные
2. Распределительные. к которым отнесем торцевые и роторные.
3. Магистральные (используются с аккумуляторным впрыском common rail).
Основу и сердце любого ТНВД составляет плунжерная пара. Парой ее называют, потому-что она состоит из цилиндра и поршня, подогнанных друг к другу с прецизионной точностью, так как уплотнение достигается микроскопическим зазором.
В плунжерной паре есть три топливных канала:
3. канал отсечки.
Плунжер имеет внутренний канал, соединенный со спирально нарезанным по его поверхности каналом отсечки, поворотом корпуса плунжерной пары достигается совпадение спиральной нарезки с каналом отсечки подачи топлива при различном ходе плунжера, таим образом производится регулировка количества цикловой подачи топлива на форсунку. Наглядно можно посмотреть гифку
Плунжер приводится в движение кулачковым распределительным валом. Поворот корпуса плунжерных пар в многоцилиндровых моторах осуществляется единой зубчатой или пазово-шипной рейкой, которую так и называют — топливная рейка. Топливную рейку двигает педаль газа, которая на дизеле правильно называется — педаль подачи топлива или педаль регулятора оборотов если ТНВД оснащен таковым. Прямой привод используется только в очень простых конструкциях, подавляющее количество ТНВД оснащаются автоматическим регулятором. И тут мы коснулись коренного различия в управлении тягой бензинового и дизельного мотора.
Как в комментах заметили, в бензиновом моторе происходит количественное регулирование приготовления рабочей смеси, а в дизеле — качественное. То есть мы помним, что бензиновый мотор оснащен дроссельной заслонкой, которая связана с педалью газа и регулирует КОЛИЧЕСТВО подаваемого в двигатель топлива, а так как качество смеси (массовое соотношение топлива к воздуху) в бензиновом моторе можно принять за постоянное стехиометрическое с небольшими отклонениями, регулируем мы количество заряжаемой в цилиндр топливо-воздушной смеси. В дизельном моторе дроссельной заслонки нет, и наполнение цилиндров воздухом всегда максимально, а регулируем мы количество подаваемого топлива, изменяя КАЧЕСТВО рабочей смеси, поэтому регулирование зовется качественным.
Исходя из этого, разница заключается в том, что в бензиновом моторе мы педалью газа регулируем отдаваемую мощность. а в дизельном моторе мы регулируем скорость вращения коленчатого вала. То есть, нажимая на газ в бензинке, мы повышаем отдаваемую мощность, и раскрутится она до таких оборотов, пока сопротивление не сравняется с отдаваемой мощностью, а нажимая на педаль в дизеле мы грубо говоря говорим регулятору оборотов — «хочу 3000 оборотов» и регулятор уже автоматически управляет передвижением топливной рейки, меняя цикловую подачу топлива, для достижения заданного числа оборотов. Поэтому механические дизеля создают ощущение «подрыва» даже при небольшом нажатии на педаль, так как нажали мы немного, а регулятор оборотов может выкрутить цикловую подачу на максимум, как будто мы топнули в пол. Но это опять-же сильно зависит от настройки регулятора. Но кто ездил на ЯМЗ-238, те знают этот пинок под жопу при поглаживании педали подачи)))
Рядные или V-образные ТНВД состоят из таких отдельных секций на каждый цилиндр, приводимых кулачковым валом.
Топливная рейка как вариант выглядит подобным образом
Такие ТНВД помимо центробежного автоматического регулятора оборотов оснащаются центробежной муфтой опережения впрыска топлива, которая устанавливается на входном валу ТНВД и при увеличении оборотов доворачивает распределительный вал на опережение, делая подачу топлива более ранней, чтобы оно успело полностью сгореть с максимальной эффективностью.
Кроме этого ТНВД зачастую оборудуется ТННД (топливный насос низкого давления), который приводится от отдельного кулачка распределительного вала и отвечает за снабжение ТНВД топливом из бака.
К недостаткам такого типа ТНВД стоит отнести большие габариты и большую зависимость от равномерного качества изготовления плунжерных пар, так как малейшие огрехи вызовут разбег в выдаваемом давлении и цикловой подаче по цилиндрам.
Преходим к ТНВД распределительного типа, которые получили огромное распространение на легковых машинах, где необходима компактность, которой не располагают рядные насосы.
Первой рассмотрим торцевую конструкцию. Главной ее особенностью является наличие одной единственной плунжерной секции на все цилиндры, что дает огромный выигрыш в компактности и в единстве качества цикловой подачи по цилиндрам, так как плунжерная пара одна на всех.
В таких ТНВД поршень плунжерной пары осуществляет не только обратно-поступательные движения, но и вращается, а его корпус, который называется распределительной головкой — неподвижен.
В таких ТНВД плунжер имеет продольные прорези по количеству цилиндров, которые при вращении открывают или запирают подающий канал, кулачковый диск у основания плунжера при вращении попадает своими выступами на ролики роликового кольца, благодаря чему совершает обратно-поступательные движения, поворачиваясь подающим отверстием поочередно к каждому выходу к форсункам и осуществляет подачу топлива. Регулирование подачи топлива осуществляется дозирующей муфтой, которая скользит по шейке плунжера, открывая канал отсечки, передвижением муфты управляет центробежный регулятор оборотов. Также ТНВД оборудован автоматом опережения впрыска топлива, который перемещает роликовое кольцо, меняя момент начала движения плунжера.
Такие ТНВД нередко оснащаются электронным управлением, берущим на себя функции регулятора оборотов и автомата опережения.
Также на входном валу устанавливается роторно-лопастной ТННД, так как в таких ТНВД отсутствует кулачковый вал.
С началом применения таких ТНВД, началась их чувствительность к качеству топлива, так как плунжер имеет большое количество продольных прорезей и вращается с большой скоростью, любая песчинка может полностью вывести плунжерную пару из строя, а так как она у нас одна на весь мотор — мы теряем подвижность, в отличии от рядных ТНВД, обладающих рекордной живучестью. Также данные ТНВД не слишком в восторге от современной солярки, отвечающей нормам ЕВРО-5, с очень низким содержанием серы, которая повышает смазывающие способности топлива, которым смазывается ТНВД.
Второй разновидностью распределительных ТНВД являются роторные.
Данные насосы проще в устройстве, однако менее надежны, и они уже все только с электронным управлением. Эти насосы были закатом эры механических ТНВД.
В них также присутствует одна насосная секция, зачастую состоящая из двух плунжеров, которые нагнетают топливо в общую камеру высокого давления, которая находится во вращающемся распределительном вале, который поочередно соединяет насосную секцию с форсунками. Регулирование количества впрыскиваемого топлива осуществляется электромагнитным клапаном, выполняющим сброс давления из камеры в соответствии с заданной цикловой подачей. Регулирование опережения впрыска осуществляется перемещением кулачковой обоймы при помощи сервопривода.
Как видим, устройство стало до безобразия простым. Эти ТНВД благодаря электронному управлению достигли максимума в качестве смесеобразования и управления подачей топлива для классических топливных систем. И были довольно неприхотливыми. Основные проблемы связаны с износом роликов-толкателей плунжеров, так как они испытывают большие нагрузки и перемещаются с большой скоростью, а смазываются топливом, стремительно теряющим свои смазывающие свойства.
И тут мы подошли к революции в мире топливных систем, к Common Rail.
Эта система не так страшна, как ее описывают, при правильном уходе очень долговечна и не требует внимания. Однако требовательна к качеству фильтрации топлива, это ее единственный «минус», в остальном эта система позволила обрести дизелям настоящую быстроходность, экономичность, плавность работы. Дизеля резко отхватили большой процент у бензиновых моторов только благодаря Common rail.
Кардинальное отличие этой системы заключается в том, что регулирование подачи больше не осуществляется давлением выдаваемым ТНВД, что позволило резко поднять давление топлива, которое стало достигать 2000 атмосфер.
ТНВД в таких системах стал предельно прост, из него вытряхнули все лишнее, оставив только насосные секции.
Теперь ТНВД не занимается распределением топлива, опережением впрыска, дозированием, теперь всем этим занимается электронный блок управления двигателем. А ТНВД только качает топливо в топливную рампу, откуда оно подается к электромагнитным топливным форсункам, на рампе устанавливается датчик давления топлива и регулятор давления. Также в некоторых вариациях датчиков и регуляторов может стоять несколько.
Топливная рампа зовется аккумулятором давления, откуда система и получила название — аккумуляторный впрыск. Также Common Rail означает — общая рампа.
Упростился ТНВД, зато усложнилась форсунка, став помимо этого очень дорогой.
Форсунки бывают двух типов.
Пьезофорсунки это последнее слово в топливных системах. В отличии от электромагнитной, где как мы уже изучали, сердечник под действием магнитного поля открывает перепускной канал и стравливает давление топлива с обратного конца иглы, давая ей возможность подняться, вместо электромагнита с сердечником используется пьезоэлемент из спеченных керамических пластинок, который под действием разряда может менять свои размеры, открывая перепускной клапан, при этом из-за прецизионных размеров пьезоэлемента и запорного клапана, между ними устанавливается гидрокомпенсатор.
Такие форсунки практически неремонтопригодны, однако обладают сумасшедшим быстродействием, позволяющим осуществить впрыск топлива до десяти раз за цикл!
При изготовлении такой форсунки на заводе, она проходит испытание на производительность, после чего ей присваивается корректировочный код, который выглядит так
Этот код необходимо прописывать в блок управления двигателя при замене форсунки, для того чтобы он мог скорректировать время впрыска. Поэтому просто так взять и поменять форсунку не выйдет)
Топливо в цилиндр в системе CR подается в три этапа
2. Основной впрыск
Предвпрыск производится при движении поршня к верхней мертвой точке и может состоят из 1-4 отдельных порций топлива, это позволило очень плавно наращивать давление в цилиндре и практически избавиться от характерного дизельного тарахтения, моторы стали работать гораздо мягче. При полной нагрузке на двигатель предвпрыск как правило не производится.
Далее происходит впрыск основной порции топлива, который и обеспечивает рабочий ход, основной впрыск также может состоять из нескольких порций топлива. Все это направлено на борьбу с резким ростом давления. Режимов впрысков великое множество, все зависит от условий и множества факторов.
Но есть еще поствпрыск, и о нем чуть более развернуто.
Дизельные моторы всегда грешили экологией, особенно обильными выбросами различных оксидов азота и сажи. Оксиды азота образуются при большом избытке кислорода и высокой температуре. Что в бензиновых моторах происходит при переобеднении рабочей смеси. А дизелю вообще свойственна работа на сверхбедной смеси, так как регулирование качественное и доступ воздуха в мотор неограничен.
Если с выбросами соединений углерода успешно борется каталитический нейтрализатор, с соединениями азота он ничего поделать не может, и тут пришлось искать выход. А выход один — снизить температуру в камере сгорания и уменьшить количество кислорода на режимах неполной мощности. Так родилась система EGR или система рециркуляции отработавших газов.
Принцип прост — направить часть отработаших газов обратно во впуск, тем самым заместив часть воздуха инертным газом, снизив содержание кислорода и одновременно понизив температуру в камере сгорания, плюсом отработавшие газы перед попаданием во впуск проходят через жидкостный теплообменник, остывая и ускоряя прогрев мотора. Чтобы улучшить засасывание отработавших газов, к дизелю прикрутили дроссельную заслонку, которая в момент активации EGR прикрывается, ограничивая доступ воздуха и создавая отрицательное давление во впускном коллекторе. Таким образом мы получаем сильное снижение гадких азотосодержащих выбросов и лепим шильдик евро пять) Но не сразу, так как при обогащении топливной смеси у нас возникает вторая проблема — сажа, которая типа канцероген. Так вот, чтобы уменьшить ее содержание, нужно обеднить смесь, а тут опа, привет оксид азота. Ситуация патовая, но не совсем. Чтобы бороться с сажей, придумали перед катализатором ставить сажевый фильтр, который грубо говоря представляет из себя сетку, улавливающую частицы сажи, и тут нам пригодился поствпрыск. Сажевый фильтр рано или поздно забивается, от чего растет противодавление в выхлопной системе, и ЭБУ запускает процедуру регенерации фильтра, при которой посредством поствпрыска, вытесняемые выхлопные газы щедро сдабриваются порцией топлива, которое попадает в сажевый фильтр и выжигает эту сажу оттуда. Из выхлопной трубы при этом идет нехилый такой дымосрал, который здорово пугает несведущих автовладельцев. Наверняка многие видели такое явление на дороге. Прерывать этот процесс и паниковать не стоит, дайте мотору докоптить до конца.
[Дизель] Common Rail: логика коррекции подач по цилиндрам
.
Возьмем за основу идеальный двигатель с идеальной компрессией и. поставим на него, для примера, идеально льющие форсунки. Льющими, в данном случае, подразумеваются форсунки с избыточной подачей. Причём, идеальность их проверим на стенде и убедимся, что все они льют идеально ровно. Я возьму абстрактные цифры, близкие к пониманию. Например, на ХХ при норме 4 куб они дают 6 куб.
Ставим их на авто, подключаем сканер и. Какую коррекцию мы увидим. Отвечу за всех: коррекция будет близка к нулю.
Чтобы понять, почему будет именно так, вы должны понять, как работает механизм коррекции.
Ведь если льют все четыре форсунки одинаково, то, по идее, механизм управления коррекцией должен отрезать лишнее топливо. В данном случае — это два кубика. Сканер должен показать коррекцию по цилиндрам везде минус два, чтобы в результате осталось четыре. Но, будет всё совсем по-другому. Коррекция по всем цилиндрам не может быть как отрицательная, так и положительная. И вот почему.
Первая ошибка всех диагностов: смотреть коррекцию, не учитывая общую подачу на ХХ.
Вы можете долго спорить о неравномерности поцилиндровой коррекции, но, мало кто вспомнит норму подачи топлива на ХХ. А ведь без этого параметра рассматривать коррекцию не корректно, а в сложных случаях — бессмысленно.
Берём приведенный пример: все четыре форсунки льют равномерно, зачем вступать в работу коррекции. Система ХХ срежет лишнее топливо. Если это мерс, то при норме ХХ 6 куб, чтобы удержать холостые в норме , система срежет лишние 2 куб, и сканер покажет 4 куб. И, т.к. в нашем примере форсунки льют равномерно, то и коррекция получается "в нолях". И сканер вам выдаст идеальные показания, если вы ориентируетесь только на коррекцию.
Заранее предупреждаю: кто не знает, почему чем больше топлива льют форсунки, тем меньше топлива на ХХ будет показывать сканер — проходите мимо — тему коррекции вам читать ещё рано. [прим.: подчёркнутой фразы вполне достаточно]
А, вернее, вам нужно в 95-2000 год в эру электронных насосов VE. Кто занимался диагностикой дизелей в то время, подачи на ХХ помнили назубок. Если взять, для примера, мерс Спринт, то норма подачи была 4.5 куб. Чиповали их молотком, старались набить подачу, сдвигая его электронную головку в сторону увеличения подачи до двух кубиков. При этом, машины гораздо лучше ехали. А если набивали "в ноль", его уже колбасило на холостом ходу по дикому превышению подачи топлива.
Теперь рассмотрим реальную ситуацию. Тот же Спринтер, только 2000 — 2006 года.
Есть такой параметр у форсунки, называется предвпрыск: норма подачи в среднем по стенду от 0.3 до 3.0 куб. Так вот, когда предвпрыск доходит до 4 кубиков, машина начинает звенеть, а когда до 5 куб, звенит на ускорении так, что жигулям на 66 бензине можно позавидовать.
Подачи на этом режиме увеличиваются со временем сами, и при пробегах 250-300 тысяч доходят, у самого глухого водилы, до 5 — 6 кубиков.
Обычное явление: авто приезжает с жалобой на звон при ускорении. Звенеть, конечно, может не только из-за форсунок. Но, сканером обычно разобраться, форсунки или нет, учитывая только поцилиндровую коррекцию, могут не все. И вот почему.
Система ХХ срежет лишнее топливо со всех цилиндров в равном количестве. Допустим, суммарный разброс по цилиндрам, после среза лишнего топлива, составляет один кубик.
Вот с этим кубиком разберется уже поцилиндровая коррекция. Она раскинет эту разницу:
— как минимум, между двумя форсунками
— как максимум, между всеми четырьмя
И, в результате, вы увидите разброс в 0.5 — 0.8 куб на конченных форсунках, что будет казаться нормой. В итоге, если вы будете ориентироваться только на коррекцию, без учета изменений подачи на ХХ, вы неизбежно будете допускать ошибки, в результате которых будете приговаривать как исправные форсунки, так и оставлять пачками неисправные — пример я вам привел выше.
Поэтому, возьмите за правило при диагностике смотреть не только коррекцию, но и на подачу на ХХ — её изменение в пределах 2.5-3 кубика от нормы, особенно в сторону уменьшения показателей — уже первый симптом завышенной подачи всеми форсунками.
Как видит сканер наши форсунки.. и как компьютер реагирует на неисправности форсунок..
Для понимания происходящего возьмем, для примера, идеальный двухцилиндровый движок и поставим на него две идеальные форсунки. Поскольку дозы у этих форсунок идеальны, то вращение каждого цилиндра происходит за одинаковое количество времени. А именно, измеряя время, за которое каждый цилиндр делает свой оборот, система баланса судит о равномерности работы двигателя.
Давайте не забывать и про ХХ — именно он служит тем нулём, относительно которого и работает вся система измерения баланса.
Итак, исправные форсунки. Берем за основу форсунку 0445110108 и разберёмся, какие параметры отвечают за подачу на ХХ. А их всего два:
Холостой ход LL 4.5куб [прим.: LL = L eer l auf = Холостой ход по-немецки]
Предвпрыск VE 1.6 куб, но для удобства 2.0 [прим.: VE = V or E inspritzung = Предвпрыск по-немецки]
Эти два параметра и отвечают за общую величину ХХ. Соответственно, общее сложение этих величин даёт общую подачу ХХ, она равна:
4.5 куб + 2.0 куб= 6.5 куб — это и есть величина топлива для каждого цилиндра, нужная для удержания идеального двигателя в заданных оборотах системой холостого хода.
Следует также помнить, что эта величина всегда отображается сканером для одного цилиндра. Поэтому, у движков с одинаковым поцилиндровым объемом, но разным количеством цилиндров, эта величина, как правило, близка.
Немного отступлю и остановлюсь на системе измеряемых величин, которые я применяю в теме. Меня могут обвинить в том, что на машине измерение идёт не в кубиках, а в мг, или вообще в микросекундах — и будут правы. Здесь не важно — хоть в вёдрах. Я взял за основу параметры на основе тест-плана, а цифры тест-плана очень близки к тем цифрам, которые в большинстве случаев отображаются сканером. Поэтому, эти цифры близки и топливникам, и диагностикам. А кубики, миллиграммы или микросекунды — кому как ближе, так и считайте.
Что имеем после замены, идеал + б/у: —- 6.5 куб — + — 8.5 куб —- = 15 куб — вырос холостой на два кубика
Какой могла бы быть работа баланса: ——— 0 ——- и —— — -2
Общая подача,
исправная форсунка + б/у: —————- 6.5 куб — + — 8.5 куб —- = 15 куб — общий холостой нарушен
———————————————————————————————————————————————-
Т.е. мы имеем явное превышение подачи на ХХ на 2 кубика. Поэтому, в дело вступает регулировка ХХ, которая заберёт
лишние два кубика, одновременно по одному у каждого цилиндра.
———————————————————————————————————————————————-
В результате мы получим: —————— 5.5 куб — + — 7.5 куб —- = 13 куб — холостой приведён в норму
В результате имеем: ————————- 6.5 куб — + — 6.5 куб —- = 13 куб — холостой в норме и сбалансирован
———————————————————————————————————————————————-
То есть общий баланс будет +1 и -1. Это и будут реальные показания сканера.
Теперь берём две б/у форсунки после топливного цеха с небольшим расколбасом. Одна с подачей 5.5 куб, другая 7.5 куб.
———————————————————————————————————————————————-
Что будем иметь в результате: ————— 5.5 куб — + — 7.5 куб —- = 13 куб — общий холостой и так в норме
В результате имеем: ————————- 6.5 куб — + — 6.5 куб —- = 13 куб — холостой в норме и сбалансирован
———————————————————————————————————————————————-
А баланс-то в последних двух примерах не изменился: +1 и -1.
Разница только в холостом, 13 против 15.
Или по сканеру, 6.5 нормальная подача против 4.5 завышенная.
[прим.: "4.5" — таким образом система сигнализирует, что она снизила общую подачу на два кубика,
т.к. при подаче штатной дозы 6.5 нарушаются заданные параметры ХХ]
———————————————————————————————————————————————-
Таким образом, зная показания ХХ и понимая работу баланса, можно находить нарушения в работе топливной системы.
Тема до конца не раскрыта, но начал получать замечания — много математики.
Можно и без математики.
Представим себе идеальный авто, где весь баланс выглядит, как 0. 0. 0. 0.
Сказочно, и вы скажете, такого не бывает — и будете правы.
Почему? Да все очень просто.
Если в виду маленькой компрессии отдача цилиндра падает, система баланса увеличит подачу для этого цилиндра.
Если под форсунку установить две шайбы, то из-за изменения положения высоты распылителя произойдёт нарушение процесса горения, отдача цилиндра падает, система коррекции еще добавит топливо этому цилиндру. И толку, кроме дыма, от этого не будет, но, сам факт.
Минусовая коррекция
Встречается чаще, но, причин вызывающих её, меньше. Как правило, говорит о неисправных форсунках. Форсунки устроены так, что со временем при большом моторесурсе, или при интенсивном износе, они увеличивают свои подачи. Сответственно, система коррекции двигателя начинает работать в минус.
Вторая по величине причина, вызывающая минусовую коррекцию — это попадание масла в цилиндры или в цилиндр.
Есть еще одна коррекция. Это плавающая, или когда значения коррекции пляшут, часто переходя с отрицательного знака в положительный. Двигатель при этом на ХХ может подтраивать. Как правило, на ходу серьезных проблем в динамике не чувствуется. Как правило это первый признак неисправных клапанов, большие зазоры в направляющих, не держат и т.д. Второй вариант, при наличии сизого дыма — бесконтрольная подача топлива через форсунки в цилиндры двигателя. Второй вариант неисправности начал часто встречаться с переходом на пьезофорсунки. Дело в том, что изношенные распылители пьезофорсунок совсем не редкость. И их основная неисправность — они начинают капать без сигнала, и в цилиндры двигателя бесконтрольно капает солярка. Именно эта неисправность является массовой причиной вылета сажевых фильтров. И именно она является причиной повторного возвращения с претензиями после удаления сажи, только звучит по-другому: дымит на холостых. А дымит потому, что топливо капает.
Ведь сажу вы удалили, а причину не устранили. А ее сканером видно на все 100%, только научитесь смотреть.
Есть ещё одна причина, которая заставляет коррекцию сходить с ума. Это заслонки во впускном колекторе. Не путайте с дроссельной заслонкой.
Зачем они вообще нужны, ведь столько лет обходились без них.
После того, как двигателя перешли на четырех клапанную систему впрыска, конструкторы решили, что можно улучшить горение топлива в цилиндре в точке ХХ и улучшить нормы и т.д. Для этого достаточно удвоить скорость воздуха, который входит в цилиндр.
Идеальное горение топлива происходит в том случае, если на смену впрыснутой и загоревавшей молекуле топлива, к каждой новой впрыснутой молекуле подлетит свежая молекула кислорода, и не одна. Поэтому, смесь в цилиндре вращается.
Заклинили заслонки, отлетели поводки, нагар, да мало ли что — и баланс на горячем двигателе просто сходит с ума.
Должен сказать, что такое поведение характерно не для всех машин, всё зависит еще от карты топливо подач для такого режима работы. На некоторых машинах, кроме небольшого изменения общей подачи, при отключенных заслонках ничего не происходит. Здесь рулит только опыт.
А можно еще проще.
Ну тогда чтобы совсем просто.
Любое отклонение баланса в пределах:
+/- 1.5 — укладывается в допуски
-/+ 2.0. 3.0 — начало проблем, либо они уже есть, но машина, как правило, ещё работает нормально
свыше 4.0 — однозначно проблемы