Что такое реакция якоря
Перейти к содержимому

Что такое реакция якоря

  • автор:

РЕАКЦИЯ ЯКОРЯ

РЕАКЦИЯ ЯКОРЯ — явление в машинах постоянного тока, которое заключается в воздействии тока якоря на магнитное поле электрической машины, в результате чего поле машины изменяется (искажается кривая индукции в воздушном зазоре и смещается физ. нейтраль). В машинах с явно выраженными полюсами изменяется магнитный поток, входящий в якорь. В генераторах это явление вызывает дополнительное падение напряжения с увеличением нагрузки, а в двигателях неблагоприятно сказывается на коммутации. Для уменьшения вредного влияния Р. я. в машинах постоянного тока укладывают компенсационные обмотки в пазах полюсных башмаков.

Большая политехническая энциклопедия. — М.: Мир и образование . Рязанцев В. Д. . 2011 .

Смотреть что такое «РЕАКЦИЯ ЯКОРЯ» в других словарях:

РЕАКЦИЯ ЯКОРЯ — воздействие тока якоря на магнитное поле электрической машины, в результате чего искажается кривая распределения индукции в воздушном зазоре и изменяется величина магнитного потока, входящего в якорь (в машинах с явно выраженными полюсами).… … Морской словарь

реакция якоря — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN armature interferencearmature reaction … Справочник технического переводчика

реакция якоря вращающейся электрической машины — Воздействие магнитодвижущей силы обмотки якоря на магнитное поле вращающейся электрической машины, создаваемое обмоткой возбуждения или постоянными магнитами. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в целом … Справочник технического переводчика

РЕАКЦИЯ ЯКОРЯ — изменение магн. потока в возд. зазоре между статором и ротором электрич. машины при протекании тока по обмотке якоря. Обычно ухудшает хар ки машины … Большой энциклопедический политехнический словарь

продольная реакция якоря вращающейся электрической машины — продольная реакция якоря Реакция якоря вращающейся электрической машины, образуемая составляющей намагничивающей силы обмотки якоря, создающей магнитный поток, направленный по продольной оси полюсов. [ГОСТ 27471 87] Тематики машины электрические… … Справочник технического переводчика

поперечная реакция якоря вращающейся электрической машины — поперечная реакция якоря Реакция вращающейся электрической машины, образуемая составляющей намагничивающей силы обмотки якоря, создающей магнитный поток, направленный по поперечной оси полюсов. [ГОСТ 27471 87] Тематики машины электрические… … Справочник технического переводчика

поперечная реакция якоря — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN quadrature axis armature reaction … Справочник технического переводчика

Реакция (действие) — Реакция (лат. re… против + лат. actio действие) действие, возникающие в ответ на какое либо воздействие. Содержание 1 В химии и физике 2 В биологии и медицине 3 В э … Википедия

Реакция — В Викисловаре есть статья «реакция» Реакция (лат. re…  против + лат.&#1 … Википедия

ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ — машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном … Энциклопедия Кольера

4. Реакция якоря в машинах постоянного тока.

При нагрузке машины () обмотка якоря создает собственное магнитное поле. Поля якоря и индуктора, действующие совместно, образуют результирующее поле. Действие поля якоря на поле индуктора называется реакцией якоря. Реакция якоря в машине постоянного тока определяется положением щеток относительно линии геометрической нейтрали.Линия геометрической нейтрали–это линия, проходящая через ось вращения якоря в радиальном направлении посередине между двумя соседними главными полюсами.

Поперечная реакция якоря. При наличии тока в обмотке возбуждения и отсутствии тока в обмотке якоря (=0) в машине существует только магнитное поле индуктора, картина которого изображена на рис.а. Линия геометрической нейтрали 1-1 в этом случае одновременно является и линией физической нейтрали, так как индукция поля индуктора равна нулю в тех же точках на поверхности якоря, через которые проходит линия геометрической нейтрали. При наличии тока в обмотке якоря и отсутствии тока в обмотке возбуждения (= 0) и установке щеток на линии геометрической нейтрали1-1, ось поля якоря направлена по поперечной оси индуктора и действует поперечная реакция якоря (рис.б). Если по обмоткам возбуждения и якоря протекают токи, то существуют одновременно поле индуктора и поле якоря. Как следует из рис. в, поперечная реакция якоря вызывает ослабление поля под одним краем полюса и его усиление под другим, вследствие чего ось результирующего поля поворачивается в генераторе по направлению вращения якоря, а в двигателе в обратную сторону. Под воздействием поперечной реакции якоря линия физической нейтрали поворачивается из положения 1-1 на некоторый угол β в положение 2-2, которое называется линией физической нейтрали. В генераторе физическая нейтраль повернута в сторону вращения якоря, а в двигателе — в обратную.

Продольная реакция якоря. Если щетки сдвинуты с линии геометрической нейтрали на 90 эл. град.(рис. г), то ось поля якоря направлена по продольной оси индуктора и действует поле продольной реакции якоря. Это поле в зависимости от направления тока якоря оказывает на поле индуктора намагничивающее или размагничивающее действие.

Общий случай. В случае если щетки сдвинуты с геометрической нейтрали на некоторый угол =90 эл. град., в машине существуют как поперечная, так и продольная (намагничивающая или размагничивающая) составляющие реакции якоря.

Влияние реакции якоря на магнитный поток машины. Для оценки влияния реакции якоря необходимо рассмотреть распределения индукции магнитных потоков индуктора и якоря в воздушном зазоре, и на основе их провести анализ результирующего магнитного поля (рис ниже).

Распределение индукции магнитного поля индуктора (1) является симметричным относительно оси полюсов, близким к трапецеидальному. Распределение МДС обмотки якоря (2) имеет наибольшее значение на линии геометрической нейтрали, а по оси полюсов — равна нулю. Однако распределение магнитной индукции поля якоря (3) в зазоре совпадает с распределением МДС якоря лишь в пределах полюсных наконечников. В междуполюсном промежутке магнитная индукция поля якоря резко уменьшается, что объясняется большим магнитным сопротивлением. Распределение индукции результирующего поля в воздушном зазоре получено путем суммирования распределений (1) и (3) и соответствует ненасыщенному состоянию магнитной цепи (4). Если магнитная цепь машины насыщена, то происходит не только искажение распределения индукции результирующего поля (5), но и уменьшение по величине. Реакция якоря в машине постоянного тока оказывает отрицательное влияние. За счет искажения магнитного поля возрастает напряжение между соседними коллекторными пластинами, что ухудшает условия коммутации. В случае уменьшения индукции результирующего поля ухудшаются рабочие свойства машины: у генераторов снижается ЭДС, у двигателей уменьшается вращающий момент. Эффективным средством борьбы с вредным влиянием реакции якоря является применение компенсационной обмотки. Компенсационная обмотка укладывается в пазы полюсных наконечников и включается последовательно с обмоткой якоря таким образом, чтобы ее МДС Fк была противоположна по направлению МДС обмотки якоря Fа. Компенсационная обмотка равномерно распределяется по поверхности полюсных наконечников главных полюсов. При наличии компенсационной обмотки магнитное поле машины при переходе из режима холостого хода к нагрузке остается практически неизменным.

Реакция якоря в машинах постоянного тока

Реакция якоря в машинах постоянного токаМагнитный поток в машине постоянного тока создается всеми ее обмотками, по которым протекает ток. В режиме холостого хода по обмотке якоря генератора ток не протекает, а по обмотке якоря двигателя протекает ток холостого хода, небольшой по значению. Поэтому в машине существует только основной магнитный поток Ф0, создаваемый обмоткой возбуждения полюсов и симметричный относительно их осевой линии (рис. 1, а).

На рис. 1, а (коллектор не показан) щетки расположены рядом с проводниками обмотки якоря, от которых идут отпайки к тем коллекторным пластинам, с которыми в данный момент соединены щетки. Такое положение щеток называется положением на геометрической нейтрали, т. е. на линии, проходящей через центр якоря и проводники обмотки, в которых индуцируемая основным магнитным потоком э. д. с. равна нулю. Геометрическая нейтраль перпендикулярна осевой линии полюсов.

Когда к обмотке якоря генератора присоединена нагрузка Rn или когда на вал двигателя действует тормозной момент, по обмотке протекает ток якоря 1Я, который создает магнитный поток якоря Фя (рис. 1, б). Магнитный поток якоря направлен по линии, на которой расположены щетки. Если щетки расположены на геометрической нейтрали, то поток якоря направлен перпендикулярно основному магнитному потоку и поэтому называется поперечным магнитным потоком.

Магнитные потоки в машине постоянного тока

Рис. 1. Магнитные потоки в машине постоянного тока: а — магнитный поток полюсов; б — магнитный поток обмотки якоря; в — результирующий магнитный поток

Влияние магнитного потока якоря на основной магнитный поток называется реакцией якоря. В генераторе постоянного тока под «сбегающим» краем полюса магнитные потоки складываются, под «набегающим» — вычитаются. У двигателя — наоборот. Таким образом под одним краем полюса результирующий магнитный поток Ф увеличивается по сравнению с основным магнитным потоком, под другим краем полюса — уменьшается. В результате он становится несимметричным по отношению к осевой линии полюсов (рис. 1, в).

Физическая нейтраль — линия, проходящая через центр якоря и проводники обмотки якоря, в которых индуцируемая результирующим магнитным потоком э. д. с. равна нулю, поворачивается на угол а по отношению к геометрической нейтрали (в сторону опережения у генераторов, в сторону отставания — у двигателей). При холостом ходе физическая нейтраль совпадает с геометрической.

В результате реакции якоря магнитная индукция в зазоре машины становится еще более неравномерной. В проводниках якоря, находящихся в точках повышенной магнитной индукции, индуцируется большая э. д. с, что приводит к увеличению разности потенциалов между соседними пластинами коллектора и к возникновению искрения на коллекторе. Иногда электрическая дуга перекрывает весь коллектор, образуя «круговой огонь».

Кроме того, реакция якоря приводит к уменьшению э. д. с. якоря, если машина работает в области, близкой к насыщению. Это связано с тем, что когда основной магнитный поток Ф0 создает насыщенное состояние магнитопровода, то увеличение магнитного потока на +ΔФ под одним краем полюса будет меньшим, чем уменьшение на —ΔФ под другим (рис. 2). Это приводит к уменьшению суммарного потока полюса и э. д. с. якоря, так как

Отрицательное влияние реакции якоря можно уменьшить, сдвигая щетки на физическую нейтраль. При этом поток якоря поворачивается на угол α и встречный поток под набегающим краем полюса генератора уменьшается. Сдвиг щеток осуществляют у генератора по направлению вращения якоря, а у двигателя — против направления вращения якоря. Угол α меняется с изменением тока якоря Iя. На практике щетки обычно устанавливают на угол, соответствующий средней нагрузке.

Влияние степени намагничивания на результирующий магнитный поток
Рис. 2. Влияние степени намагничивания на результирующий магнитный поток ( Iв•wв – м.д.с обмотки возбуждения; Iя•wя – м.д.с обмотки якоря).

В машинах средней и большой мощностей применяют компенсационную обмотку, расположенную в пазах главных полюсов и включаемую последовательно с обмоткой якоря так, чтобы ее магнитный поток Фк был противоположен магнитному потоку Фя. Если при этом Фк = Фя, то магнитный поток в воздушном зазоре из-за реакции якоря практически не искажается.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

§29. Реакция якоря

Физическая сущность реакции якоря. При холостом ходе магнитный поток в машине создается только магнитодвижущей силой обмотки возбуждения 1 (рис. 104). В этом случае магнитный поток возбуждения Фв, пронизывающий якорь 2, распределяется симметрично относительно продольной оси. Поток возбуждения направлен по продольной оси полюсов, поэтому магнитное поле возбуждения называют продольным (рис. 105, а).

При работе машины под нагрузкой по обмотке якоря проходит

Рис. 104. Магнитное поле машины постоянного тока в режиме холостого хода

Рис. 104. Магнитное поле машины постоянного тока в режиме холостого хода

ток, который создает свое магнитное поле. Воздействие поля якоря на магнитное поле машины называют реакцией якоря. Магнитный поток Фя, созданный током якоря, в двухполюсной машине при установке щеток на геометрической нейтрали направлен по поперечной оси машины (рис. 105,б), поэтому магнитное поле якоря называют поперечным.

В результате действия потока якоря Фя симметричное распределение магнитного поля машины искажается и результирующий поток Фрез оказывается сосредоточенным в основном у краев главных полюсов (рис. 105, в). Рис. 106 поясняет распределение магнитного поля машины вдоль окружности якоря (кривые распределения индукции).

Вредные последствия реакции якоря. 1. Физическая нейтраль б — б (линия, соединяющая точки окружности якоря, в которых индукция равна нулю) смещается относительно геометрической нейтрали а — а на некоторый угол ? (см. рис. 105, в и 106, в). В генераторах физическая нейтраль смещается по направлению вращения якоря, в двигателях — против направления вращения. Как будет показано далее, это ухудшает коммутацию машины, т. е. способствует возникновению искрения под щетками.

2. Результирующий магнитный поток машины Фрез при насыщении магнитной цепи уменьшается, т. е. уменьшается и э. д. с. E, индуцированная при нагрузке, по сравнению с э. д. с. Е0 при холостом ходе.

3. В кривой распределения результирующей индукции в воздушном зазоре (см. рис. 106, в) возникают пики индукции Вмах под краями главных полюсов, способствующие образованию в машине кругового огня.

Размагничивающее действие реакции якоря. Поток якоря Фя усиливает результирующий магнитный поток под одной половиной полюса и ослабляет его под другой половиной (см. рис. 105, в). Однако благодаря насыщению магнитной цепи машины увеличение потока под одной половиной полюса оказывается меньшим, чем ослабление потока под другой его половиной,

Рис. 105. Магнитное поле машины постоянного тока: а — от обмотки возбуждения; б — от обмотки якоря; в — результирующее; 1 — обмотка возбуждения; 2 — якорь

Рис. 105. Магнитное поле машины постоянного тока: а — от обмотки возбуждения; б — от обмотки якоря; в — результирующее; 1 — обмотка возбуждения; 2 — якорь

вследствие чего общий поток машины уменьшается. Это наглядно видно на магнитной характеристике магнитной цепи машины (рис. 107), на которой показаны потоки под «правой» и под «левой» половинами полюса Фпр и Флев и их приращение ?Фпр и ?Флев, обусловленные действием реакции якоря.
Поток Фпр создается совместным действием м. д. с. возбуждения FB и м. д. с. якоря Fя, направленных согласно, т. е. FB + Fя, поток Флев — действием этих м. д. с, направленных встречно, т. е. FB— Fя. Поэтому в данном случае ? Фпр < Флев.

Рис. 106. Распределение индукции в воздушном зазоре машины постоянного тока: а — от обмотки возбуждения; б — от обмотки якоря; в — результирующее Рис. 106. Распределение индукции в воздушном зазоре машины постоянного тока: а — от обмотки возбуждения; б — от обмотки якоря; в — результирующее

Рис. 107. Магнитная характеристика машины постоянного тока

Рис. 107. Магнитная характеристика машины постоянного тока

При холостом ходе, когда м. д. с. Fя = 0, потоки Фпр и Флев будут равны.

Хотя уменьшение магнитного потока под действием м. д. с. якоря обычно невелико и составляет всего 1—3 %, это существенно сказывается на характеристиках генераторов постоянного тока и приводит к уменьшению э. д. с. Е машины при нагрузке по сравнению с э. д. с. Е0 при холостом ходе.

Круговой огонь на коллекторе. Круговым огнем называют мощную электрическую дугу, возникающую в некоторых случаях на коллекторе машин постоянного тока. Эта дуга замыкает накоротко всю или значительную часть обмотки якоря (рис. 108, а), вследствие чего резко возрастает ток машины. Круговой огонь является крупной аварией. Образовавшаяся дуга сильно повреждает коллекторные пластины, изоляторы щеткодержателей и изоляцию лобовых частей машины, выводя ее из строя. В тяговых двигателях дуга часто перебрасывается на ближайшие заземленные части машины — корпус и наконечник главного полюса (рис. 108, б), вызывая также тяжелые повреждения. Появление такой дуги называют вспышкой на коллекторе электрической машины.

Причинами возникновения кругового огня могут быть вытягивание дуги из-под щетки или образование дуги между соседними коллекторными пластинами из-за замыкания их осколками щеток или щеточной пылью. Однако для того, чтобы эти причины могли вызвать круговой огонь, вдоль коллектора должно действовать сильное электрическое поле.

Электрическое поле, действующее вдоль окружности коллектора, определяется напряжением между положительными и , тем интенсивнее электрическое поле в данном месте и тем больше его напряженность. Напряжение uк между смежными коллекторными пластинами практически равно э. д. с. ес, индуцированной в одной

Рис. 108. Образование кругового огня на коллекторе

Рис. 108. Образование кругового огня на коллекторе

Рис. 109. Возникновение напряжения U<sub>к</sub> max

Рис. 109. Возникновение напряжения Uк max

Рис. 110. Схема образования кругового огня при замыкании коллекторных пластин посторонними частицами: 1 — замыкание; 2 — посторонняя частица; 3 — наволакивание меди; 4 — щеточная пыль; 5 — прогоревший миканит; 6 — первичная дуга; 7 — газы и пары меди; 8 — мощная дуга

alt=»Схема образования кругового огня» width=»300″ height=»39″ />Рис. 110. Схема образования кругового огня при замыкании коллекторных пластин посторонними частицами: 1 — замыкание; 2 — посторонняя частица; 3 — наволакивание меди; 4 — щеточная пыль; 5 — прогоревший миканит; 6 — первичная дуга; 7 — газы и пары меди; 8 — мощная дуга

секции обмотки якоря, которая согласно закону электромагнитной индукции пропорциональна индукции в воздушном зазоре машины.

При перемещении секций 1 (рис. 109) обмотки якоря они проходят под краями полюсов, где результирующая индукция в воздушном зазоре Врез достигает максимального значения Вmах При этом напряжение между смежными коллекторными пластинами также будет максимальным uK max. Увеличение uK mах свыше 36—40 В для машин большой мощности, какими являются тяговые двигатели и тяговые генераторы, недопустимо, так как это приводит к возникновению кругового огня на коллекторе. Следовательно, реакция якоря, создавая пики индукции Вmaх под краями полюсов и увеличивая этим напряжение uK max способствует возникновению в машине кругового огня. Чем больше ток якоря и максимальная индукция Вв по отношению к индукции Вв, тем больше неравномерность распределения индукции вдоль окружности якоря и тем больше «склонность» машины к круговому огню. По этой причине при работе тяговых двигателей в режиме ослабления возбуждения, когда индукция Вв уменьшается, а ток якоря и индукция Вв возрастают, увеличивается опасность кругового огня. То же имеет место и при боксовании, колесных пар, при этом возрастает напряжение на коллекторе двигателя, связанного с боксующей колесной парой, что приводит к увеличению напряжения uк.

Круговой огонь на коллекторе обычно развивается из небольших дуг, возникающих между соседними коллекторными пластинами А, Б в результате замыкания их накоротко посторонней частицей 2 (угольной пылью, осколками щеток) (рис. 110, а), а у тепловозных генераторов также частицами дизельного топлива и масла, попадающими на коллектор вместе с охлаждающим воздухом. Замыканию коллекторных пластин угольной пылью способствует плохой уход за коллектором, некачественная его шлифовка, наволакивание меди 3 в верхней части пластин (медь под действием силы трения и нагрева коллектора и щеток сползает в сторону, обратную вращению якоря) (рис. 110,б) и пр. Через электропроводящие мостики, образованные этими посторонними частицами, проходит ток, и мостик сгорает; если при этом между соседними пластинами имеется достаточно большое напряжение uк, то между ними возникает первичная дуга 6 (рис. 110, в). В результате горения первичной дуги пространство, прилегающее к коллектору, заполняется раскаленными газами и парами меди, т. е. становится ионизированным. Поэтому может легко произойти его пробой с образованием мощной электрической дуги 8, охватывающей ряд коллекторных пластин (рис. 110, г).

Сильное искрение щеток также способствует возникновению кругового огня. В этом случае резко увеличивается износ щеток, поверхность коллектора загрязняется щеточной пылью и возрастает вероятность попадания этой пыли и осколков щеток между коллекторными пластинами. Поэтому в машинах с большим значением напряжения uк опасность появления кругового огня в значительной мере зависит от состояния коллектора. При сильном искрении может произойти вытягивание дуги из-под щетки в направлении вращения коллектора. Если такая дуга доходит до места на коллекторе, где напряжение uк достигает 36—40 В, то она не гаснет, а продолжает гореть, вследствие чего дуги между отдельными пластинами быстро сливаются в сплошную дугу.

Устранение вредных последствий реакции якоря. «Склонность» машины к круговому огню, вызванную увеличением индукции под краями полюсных наконечников, устраняют, применяя компенсационную обмотку (рис. 111). Ею снабжают крупные машины постоянного тока, в частности генераторы тепловозов и тяговые двигатели мощных электровозов переменного и постоянного тока. Компенсационную обмотку включают таким образом, чтобы поток Фк, создаваемый ею, был направлен, против потока якоря Фя. При условии равенства м. д. с. этих обмоток FK = Fя происходит полная компенсация поперечного потока якоря и устраняются все вызываемые им вредные последствия. Компенсационную обмотку включают последовательно с обмоткой якоря, что обеспечивает компенсацию потока якоря при любой нагрузке машины. При увеличении тока якоря возрастает поток якоря Фя, но одновременно увеличивается и поток компенсационной обмотки, вследствие чего результирующий поперечный поток машины Фп = Фя— Фк = 0.

В машинах без компенсационной обмотки для предотвращения сильного увеличения индукции под краями полюсных наконечников

alt=»Рис. 111. Схема компенсации потока якоря (а) и расположение компенсационной обмотки на главных полюсах (б): 1 — компенсационная обмотка; 2 — обмотка якоря; 3 — добавочный полюс; 4 — обмотка добавочного полюса; 5 — обмотка возбуждения: 6 — главный полюс; 7 — якорь» width=»300″ height=»86″ />Рис. 111. Схема компенсации потока якоря (а) и расположение компенсационной обмотки на главных полюсах (б): 1 — компенсационная обмотка; 2 — обмотка якоря; 3 — добавочный полюс; 4 — обмотка добавочного полюса; 5 — обмотка возбуждения: 6 — главный полюс; 7 — якорь

искусственно увеличивают магнитное сопротивление в указанных местах. Для этого делают больше воздушный зазор под краями полюсных наконечников, внутреннюю поверхность которых располагают эксцентрично относительно наружной поверхности якоря. Так как магнитный поток стремится пройти по пути с наименьшим магнитным сопротивлением, то большая часть потока полюса проходит в этом случае в якорь через среднюю часть полюса, а потоки, проходящие через края полюсных наконечников, будут минимальными.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *