Сколько тактов в двигателе автомобиля 16 клапанов
Перейти к содержимому

Сколько тактов в двигателе автомобиля 16 клапанов

  • автор:

Двигатель > Рабочий цикл ДВС

В автомобилях применяются двигатели внутреннего сгорания (ДВС) названные так потому, что сгорание топлива происходит непосредственно в цилиндре. Основными деталями ДВС, кроме цилиндра, являются поршень, шатун, коленчатый вал. На кривошипе коленчатого вала подвижно закрепляется шатун. К верхней головке шатуна шарнирно, с помощью пальца, крепится поршень. Цилиндр сверху закрывается крышкой, которая называется головкой цилиндра. В головке имеется углубление, называемое камерой сгорания. Также в головке имеются впускное и выпускное отверстия, закрываемые клапанами. К коленчатому валу крепится маховик – массивный круглый диск.

При вращении коленвала происходит перемещение поршня внутри цилиндра. Крайнее верхнее положение поршня называется верхней мертвой точкой (В.М.Т.), крайнее нижнее положение – нижней мертвой точкой (Н.М.Т.). Расстояние, которое проходит поршень между мертвыми точками, называется ходом поршня. Пространство, находящееся над поршнем, когда он находится в н.м.т., называется рабочим объемом цилиндра. Когда поршень находится в в.м.т., над ним остается пространство, называемое объемом камеры сгорания. Сумма рабочего объема и объема камеры сгорания называются полным объемом цилиндра. В технических данных объем указывается в литрах или кубических сантиметрах. Объем многоцилиндрового двигателя равен сумме полных объемов всех его цилиндров. Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия двигателя. Она показывает, во сколько раз сжимается рабочая смесь в цилиндре.

Фото 1 — Параметры КШМ
Фото 2 — Рабочий цикл

Один ход поршня от одной мертвой точке к другой называется тактом. Коленвал при этом совершает полоборота. Как работает ДВС? Во время первого такта происходит впуск горючей смеси в цилиндр. Клапан впускного отверстия открыт, выпускного – закрыт. Поршень, перемещаясь от в.м.т к н.м.т, подобно насосу, создает разряжение в цилиндре и топливо, перемешанное с воздухом, заполняет его.
Во время второго такта, при движении поршня от н.м.т. к в.м.т., происходит сжатие горючей смеси. При этом и выпускной, и впускной клапаны закрыты. В результате давление и температура в цилиндре повышаются. В конце такта сжатия, при приближении поршня к в.м.т., горючая смесь поджигается искрой от свечи зажигания (в бензиновых ДВС) или самовоспламеняется от сжатия (в дизельных ДВС).
Во время третьего такта происходит сгорание рабочей смеси. Клапана остаются закрытыми. Воспламенившаяся рабочая смесь резко повышает температуру и давление в цилиндре, которое заставляет поршень с усилием двигаться вниз. Поршень через шатун передает усилие на коленвал, создавая на нем крутящий момент. Таким образом, происходит преобразование энергии сгорания топлива в механическую энергию, которая двигает автомобиль. Поэтому этот такт называется рабочим ходом. Маховик, закрепленный на коленчатом валу, запасает энергию, обеспечивая вращение коленвала за счет сил инерции во время подготовительных тактов.

В ходе четвертого такта происходит выпуск отработанных газов и очистка цилиндра. Поршень, двигаясь от н.м.т. к в.м.т., выталкивает продукты горения через открытый выпускной клапан.
Далее весь процесс повторяется. Таким образом, рабочий цикл описанного ДВС происходит за четыре такта. Поэтому он и называется четырехтактным. Коленвал за это время совершает два оборота. Существуют и двухтактные двигатели, в которых рабочий цикл происходит за два такта. Однако такие ДВС в настоящее время на автомобилях практически не применяются.

Для плавной работы многоцилиндрового двигателя и уменьшения неравномерных нагрузок на коленчатый вал такты рабочего хода в разных цилиндрах должны происходить в определенной последовательности. Такая последовательность называется порядком работы двигателя. Он определяется расположением шеек коленчатого вала и кулачков распределительного вала. Например, в двигателях ВАЗ порядок работы 1-3-4-2. Так как в четырехтактном двигателе полный цикл в каждом цилиндре совершается за два оборота коленчатого вала, то, следовательно, в четырехцилиндровом двигателе для равномерной его работы за каждые пол-оборота коленчатого вала в одном из цилиндров должен происходить рабочий такт.

Рассмотренные детали составляют в совокупности кривошипно-шатунный механизм. Кроме него, для обеспечения работы ДВС нужны газораспределительный механизм, система охлаждения, система смазки, система питания и система зажигания (в бензиновых двигателях).

Газораспределительный механизм, управляя работой клапанов, обеспечивает своевременное их открытие и закрытие. Система охлаждения отводит тепло от деталей двигателя, нагревающихся при работе. Система смазки подает масло к трущимся поверхностям. Система питания служит для приготовления рабочей смеси и подачи ее в цилиндры. Система зажигания преобразует низковольтное напряжение от АКБ в высоковольтное и подает его на свечи для воспламенения рабочей смеси.

Сколько цилиндров в 16 клапанном двигателе

Какой двигатель лучше — извечная тема для споров. Одни говорят что 8-ми клапанный движок лучше, другие что 16-клапанный. Каждый из них в чем-то прав, но это не помогает определиться тому кто сейчас стоит перед выбором. Какие плюсы и минусы этих двигателей, какой из них выигрывает в сравнении с другим и наконец, в чем разница 8 и 16 клапанов?

Какой двигатель лучше: восьми-, или 16-клапанный?

Мощность и экономичностьРемонт и обслуживаниеВозможность дальнейшего тюнинга

Мощность и экономичность

Эти два критерия зачастую становятся определяющими в выборе автомобиля. Каждый владелец авто хочет чтобы его машина была не только мощной, но и экономной в обслуживании. И для того чтобы разобраться какой из двигателей лучше, необходимо сначала разобраться в особенностях устройства 8 и 16-клапанного двигателя по отдельности.

Восьмиклапанный двигатель состоит из 4 цилиндров, на каждый из которых приходится по два клапана — один для впрыска топлива в цилиндр, другой для отвода отработанных газов.

Устройство 8-ми клапанного двигателя приводятся в движение посредством механизма на основе цепи или ремня. Простота конструкции восьмиклапанного двигателя и есть его отличительная черта.

Двигатель на 16 клапанов характеризуется более сложной конструкцией. В отличии от 8-клапанного двигателя, здесь не один а два распределительных вала. Это значит что на один цилиндр приходится в два раза больше клапанов: по два на впрыск топлива и два на выпуск отработанных газов.

Важно! Для тех кто не знает как определить сколько клапанов в двигателе совсем не обязательно «нырять» в недра двигателя. Количество клапанов авто указано на клапанной крышке двигателя.

Техническая сторона вопроса понятна, теперь поговорим о том, какие же достоинства и недостатки 8 и 16-клапанных двигателей?

С одной стороны восьмиклапанный двигатель имеет более простую конструкцию, а значит его достаточно просто ремонтировать. Но из-за небольшого количества клапанов процесс впрыска и отвода газов происходит намного медленней. Это негативно влияет не только на скорость и мощность движка, но и на расход топлива. Уровень шума двигателя зависит от того сколько установлено гидрокомпенсаторов в 8 клапанном двигателе, и обычно конструкция восьмиклапанника не утяжеляется таким сложным механизмом.

Двигатель на 16 клапанов способен развить большую скорость, в отличии от 8-клапанного. Кроме того, регулировка клапанов происходит автоматически, поэтому не требует вмешательства водителя, в то время как владельцы 8-клапанных двигателей должны делать это вручную. Маленький расход топлива также является достаточно важным преимуществом 16-клапанного двигателя.

Но сложность конструкции, наличие гидрокомпенсатора и двух распределительных валов заметно бьет по карману владельца авто и усложняют ремонт движка.

Знаете ли вы? Владельцы 16-клапанного двигателя обращаются в СТО чаще, чем владельцы авто с 8-клапанным двигателем. Это объясняется тем, что на 16-клапанный двигатель приходится больше нагрузки чем на его оппонента.

Ремонт и обслуживание

Восьми и шестнадцатиклапанные двигатели — как монетки с двумя сторонами, где одни и те же технические параметры таят в себе как положительные так и отрицательные свойства.

Принцип работы 16 клапанного двигателя заключается в высокоскоростном процессе выпрыска топлива и отвода газа. Это дает ряд преимуществ перед 8-ми клапанным двигателем, который уступает ему в скорости и мощности. Но такой сложный механизм требует особого внимания.

При покупке смазки владелец авто должен отдавать предпочтение только качественным автомобильным маслам, желательно синтетическим.

Из-за большой нагрузки детали двигателя изнашиваются намного быстрее чем в 8-клапанном двигателе, поэтому раз в полгода необходимо отправлять автомобиль на диагностику.

Из-за простоты конструкции 8-клапанного двигателя, автомобиль не может похвастаться большой скоростью. Но ремонт и обслуживание такого авто не обойдется своему владельцу слишком дорого. Обычно производители двигателей на 8 клапанов не сильно мудрят с его начинкой, и обходятся достаточно примитивными механизмами регулировки тепловых зазоров. Но отсутствие гидрокомпенсаторов делает другие части двигателя более доступными, а значит владелец авто сможет вовремя заметить и устранить неполадку.

Важно! Устранение неполадки дело рук автомеханика. Если вы не уверены что сможете отремонтировать двигатель сами, лучше обратитесь в СТО.

В любом случае, ремонт и обслуживание не будет бесплатным, не важно какой у вас двигатель 8 клапанный или 16 клапанный. Но если сравнивать, то шестнадцатиклапанный движок обходится своему владельцу в разы дороже.

Возможность дальнейшего тюнинга

Какой водитель не хотел бы усовершенствовать свое авто? Конечно каждый! Вопрос в другом — можно ли апгрейдить 8 и 16-клапанные двигатели, и если да, то как?

Простота устройства восьмиклапанного двигателя кроет в себе большой потенциал для хорошего тюнинга. Шестнадцатиклапанный двигатель, хоть и во многом обходит своего соперника, но все же, тоже не идеален. А это значит что усовершенствовать можно и его.

Что именно можно заменить:

Рабочий объем двигателя для увеличения крутящего момента. Это можно сделать увеличив ход поршня или путем расточки цилиндра.Распределительный вал с другой геометрией. Такой тюнинг позволит не только увеличить мощность двигателя, но и снизить расход топлива. Помните сколько распредвалов на 16 клапанном двигателе? Два. Представьте какой мощности двигателя можно добиться заменой сразу двух валов.Впускной ресивер с большим объемом стабилизирует работу двигателя.Заменив воздушный фильтр «нулевиком» (фильтр нулевого сопротивления), можно увеличить мощность двигателя еще на несколько процентов.Облегченные впускные и выпускные каналы большего диаметра позволят «выжать» из двигателя максимальную скорость.

Знаете ли вы что?Самым сложным и дорогим видом тюнинга является установка турбины. Но эти затраты оправданы, если владелец авто хочет сделать свое авто не только мощным, но и быстрым.

Данное сравнение дает нам возможность оценить два типа двигателя и определиться какой из них ваш больше подходит: 8 клапанный или 16 клапанный — надежность или скорость, экономия или мощь.

больше мощности двигателя | HowStuffWorks

Используя всю эту информацию, вы можете начать видеть, что существует множество различных способов улучшить работу двигателя. Производители автомобилей постоянно играют со всеми перечисленными ниже переменными, чтобы сделать двигатель более мощным и / или более экономичным.

Увеличение рабочего объема: Увеличение рабочего объема означает большую мощность, поскольку вы можете сжигать больше газа при каждом обороте двигателя.Вы можете увеличить смещение, увеличив цилиндры или добавив больше цилиндров. Двенадцать цилиндров, кажется, практический предел.

Увеличение степени сжатия: Более высокие коэффициенты сжатия производят больше мощности, вплоть до точки. Однако чем больше вы сжимаете смесь воздуха и топлива, тем больше вероятность того, что она самопроизвольно загорится (до того, как свеча зажигания зажжет ее). Высокооктановые бензины предотвращают этот вид раннего сгорания. Вот почему высокопроизводительным автомобилям обычно требуется высокооктановый бензин — их двигатели используют более высокие степени сжатия для получения большей мощности.

Добавьте больше в каждый цилиндр: Если вы можете втиснуть больше воздуха (и, следовательно, топлива) в цилиндр заданного размера, вы можете получить больше энергии из цилиндра (так же, как и при увеличении размера цилиндр) без увеличения топлива, необходимого для сгорания. Турбокомпрессоры и нагнетатели повышают давление поступающего воздуха, чтобы эффективно втиснуть больше воздуха в цилиндр.

Охлаждение поступающего воздуха: Сжатие воздуха повышает его температуру.Однако вы хотите, чтобы в цилиндре был самый холодный воздух, потому что чем он горячее, тем меньше он будет расширяться при сгорании. Поэтому многие автомобили с турбонаддувом и наддувом имеют интеркулер . Интеркулер — это специальный радиатор, через который проходит сжатый воздух, чтобы охладить его, прежде чем он попадет в цилиндр.

Позвольте воздуху поступать легче: Когда поршень движется вниз во время такта впуска, сопротивление воздуха может лишить двигатель мощности.Сопротивление воздуха может быть значительно уменьшено путем установки двух впускных клапанов в каждом цилиндре. Некоторые новые автомобили также используют полированные впускные коллекторы, чтобы устранить сопротивление воздуха. Большие воздушные фильтры также могут улучшить воздушный поток.

Позвольте выхлопным газам выходить легче: Если сопротивление воздуха затрудняет выхлоп из цилиндра, это лишает двигатель мощности. Сопротивление воздуха можно уменьшить, добавив второй выпускной клапан в каждый цилиндр. Автомобиль с двумя впускными и двумя выпускными клапанами имеет четыре клапана на цилиндр, что повышает производительность.Когда вы слышите объявление о том, что автомобиль имеет четыре цилиндра и 16 клапанов, объявление говорит о том, что двигатель имеет четыре клапана на цилиндр.

Если выхлопная труба слишком мала или глушитель имеет большое сопротивление воздуха, это может вызвать противодавление, что имеет тот же эффект. В высокоэффективных выхлопных системах используются коллекторы, большие выхлопные трубы и свободно текущие глушители для устранения противодавления в выхлопной системе. Когда вы слышите, что у автомобиля есть «двойной выхлоп», цель состоит в том, чтобы улучшить поток выхлопных газов, используя две выхлопные трубы вместо одной.

Сделайте все легче: Легкие детали помогают двигателю работать лучше. Каждый раз, когда поршень меняет направление, он использует энергию, чтобы остановить движение в одном направлении и запустить его в другом. Чем легче поршень, тем меньше энергии требуется. Это приводит к лучшей топливной эффективности, а также лучшей производительности.

Впрыск топлива: Впрыск топлива позволяет очень точно дозировать топливо для каждого цилиндра. Это улучшает производительность и экономию топлива.

В следующих разделах мы ответим на некоторые распространенные вопросы, связанные с движком, представленные читателями.

Подавляющее большинство автомобилей (легковых и коммерческих автомобилей), которые продаются сегодня, оснащены двигателями внутреннего сгорания . В этой статье мы расскажем, как работает четырехтактный двигатель внутреннего сгорания с двигателем .

Двигатель внутреннего сгорания классифицируется как тепловой двигатель . Он называется внутренним , потому что сгорание топливовоздушной смеси происходит внутри двигателя, в камере сгорания, и некоторые из сгоревших газов являются частью нового цикла сгорания.

По сути, двигатель внутреннего сгорания преобразует тепловую энергию горючей воздушно-топливной смеси в механическую энергию . Он называется , 4 такта, , потому что поршню требуется 4 такта для выполнения полного цикла сгорания. Полное название двигателя для легкового автомобиля: 4-х поршневой двигатель внутреннего сгорания , сокращенно ICE (Двигатель внутреннего сгорания).

Теперь давайте рассмотрим, какие из них являются основным компонентом ICE.

Изображение: детали двигателя внутреннего сгорания (DOHC)

  1. распредвал выпускных клапанов
  2. ведро выпускных клапанов
  3. свеча зажигания
  4. ведро впускных клапанов
  5. впускных распределительных валов
  6. выпускных клапанов
  7. впускных клапан
  8. головка цилиндра
  9. поршень
  10. поршневой палец
  11. шатун
  12. блок двигателя
  13. коленчатый вал

TDC — верхняя мертвая точка

BDC — нижняя мертвая точка

головка цилиндра ( 8) обычно содержит распределительный вал (ы), клапаны, клапанные ковши, возвратные пружины клапана, свечи зажигания и форсунки (для двигателей с прямым впрыском).Через головку цилиндров протекает охлаждающая жидкость двигателя.

Внутри блока двигателя (12) мы можем найти поршень, шатун и коленчатый вал. Что касается головки цилиндров, то через блок цилиндров протекает охлаждающая жидкость, помогающая контролировать температуру двигателя.

Поршень движется внутри цилиндра от BDC до TDC. Камера сгорания — это объем, создаваемый между поршнем, головкой цилиндров и блоком цилиндров, когда поршень находится близко к ВМТ.

На рисунке 1 мы можем рассмотреть полный набор механических компонентов ДВС.Некоторые компоненты зафиксированы (например, головка цилиндра, блок цилиндров), а некоторые из них движутся. На рисунке ниже мы рассмотрим основную движущуюся часть ДВС, которая преобразует давление газа внутри цилиндра в механическую силу.

Изображение: движущиеся части двигателя внутреннего сгорания

  1. звездочка распределительного вала
  2. поршень
  3. коленчатый вал
  4. шатун
  5. клапан
  6. клапан ведро
  7. распределительный вал

Вращение распределительного вала с вращением коленчатого вала через зубчатый ремень или цепь.Положение впускного и выпускного клапанов должно быть точно синхронизировано с положением поршня, чтобы циклы сгорания происходили соответствующим образом.

Полный цикл двигателя для 4-тактного ДВС имеет следующие фазы (такты):

  1. впуск
  2. компрессия
  3. мощность (расширение)
  4. выпуск

Ход — это движение поршня между двумя мертвыми центры (снизу и сверху).

Теперь, когда мы знаем, какие компоненты ДВС, мы можем исследовать, что происходит в каждом такте цикла двигателя.В таблице ниже вы увидите положение поршня в начале каждого хода и подробную информацию о событиях, происходящих в цилиндре.

Ход 1 — INTAKE

Ход впуска двигателя внутреннего сгорания

Во время такта впуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Ход 2 — СЖАТИЕ

Ход сжатия двигателя внутреннего сгорания

До того, как поршень достигнет ВМТ (но очень близко к нему), во время такта сжатия:

  • для бензинового двигателя: возникает искра
  • для дизельных двигателей: впрыскивается топливо

Во время такта сжатия двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов) больше, чем ход впуска.

Ход 3 — МОЩНОСТЬ

Рабочий ход двигателя внутреннего сгорания

Только во время рабочего хода двигатель вырабатывает энергию.

Ход 4 — ВЫХЛОП

Ход выхлопа двигателя внутреннего сгорания

Во время такта выпуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Как видите, для полного цикла сгорания (двигатель) поршень должен выполнить 4 такта. Это означает, что один цикл двигателя занимает двух полных оборотов коленчатого вала (720 °).

Единственный ход, который производит крутящий момент (энергию), это , рабочий ход , все остальные потребляют энергию.

Линейное движение поршня преобразуется во вращательное движение коленчатого вала через шатун.

Для лучшего понимания мы суммируем начальное положение поршня, положение клапана и энергетический баланс для каждого хода.

Ход хода Имя хода Начальное положение поршня Состояние впускного клапана Состояние выпускного клапана Энергетический баланс 1 9003 В наличии Энергетический баланс

Энергетический баланс TDC Открыто Закрыто Расходы
2 Сжатие BDC Закрыто Закрыто Потребляется
3 Мощность TDC Закрыто Закрыто Продукция
4 Выхлоп BDC Закрыто Открыто Потребляется

В анимации ниже вы можете ясно увидеть, как работает двигатель внутреннего сгорания.Обратите внимание на положение поршня, положение клапана, момент, когда происходит воспламенение, и последовательность ударов.

Анимация двигателя внутреннего сгорания

В следующих статьях мы подробнее рассмотрим параметры, характеристики и компоненты двигателя внутреннего сгорания. Если у вас есть вопросы или комментарии по поводу этой статьи, используйте форму ниже для размещения.

Не забудьте лайкать, делиться и подписываться!

Проверьте свои знания в области двигателей внутреннего сгорания, пройдя тест ниже:

Викторина! (нажмите, чтобы открыть)

  1. Технические характеристики
  2. Обзор, проблемы
  3. Производительность тюнинга

Технические характеристики двигателя Honda B16A / B16B

Производитель Honda Motor Company
Также называется Honda B16
Производство 1989-2000
Блок цилиндров из сплава Алюминий
Конфигурация Inline-4
Valvetrain DOHC
4 клапана на цилиндр
Ход поршня, мм (дюйм) 77.4 (3,05)
Диаметр цилиндра, мм (дюйм) 81 (3,19)
Степень сжатия 10,2
10,4
10,8
Водоизмещение 1595 куб. См (97,3 куб. Дюйма)
Выходная мощность 110 кВт (150 л.с.) при 7600 об / мин
116 кВт (158 л.с.) при 7800 об / мин
117 кВт (160 л.с.) при 7600 об / мин
117 кВт (160 л.с.) при 7600 об / мин
122 кВт (167 л.с.) при 7800 об / мин
125 кВт (170 л.с.) при 7800 об / мин
136 кВт (185 л.с.) при 8 200 об / мин
Выходной крутящий момент 150 Нм (110 фунт-фут) при 7100 об / мин
150 Нм (110 фунт-фут) при 7000 об / мин
152 Нм (112 фунт-фут) при 7000 об / мин
150 Нм (110 фунт-фут) при 7500 об / мин
150 Нм (110 фунт-фут) при 7300 об / мин
160 Нм (118 фунт-фут) при 7300 об / мин
163 Нм (120 фунт-фут) при 7500 об / мин
Redline 8 000 (B16A2, B16A3)
8 200 (B16A1)
8 300 (B16A5)
8 400 (B16B Тип R)
л.с. за литр 94
99
100
104
106
115
Тип топлива бензин
Вес, кг (фунты) 183 (403)
Расход топлива, л / 100 км (миль на галлон)
-Город
-Хайвей
-Совмещенный
Honda Civic
10.2 (23)
6,4 (37)
7,6 (31)
Турбокомпрессор Безнаддувный
Расход масла, л / 1000 км
(кол-во миль)
до 1,0
(1 кв. На 600 миль)
Рекомендуемое моторное масло 5W-30
5W-40
10W-30
10W-40
10W-50
15W-40
15W-50
Объем моторного масла, л (кол-во) 4,0 (4,2)
Интервал замены масла, км (миль) 5000–10 000
(3000–6 000)
Нормальная рабочая температура двигателя, ° C (F)
Срок службы двигателя, км (миль)
-Официальная информация
-Настоящая

300 000+ (180 000)
Тюнинг, HP
-Макс HP
-Без потери жизненного цикла
250+
Двигатель установлен в Honda Civic
Honda CRX
Honda Integra

Honda B16A (B16B) надежность двигателя, проблемы и ремонт

Возможно, вы слышали о легендарных двигателях Honda 90-х годов, которые были невероятно надежными и могли достигать высокой мощности без каких-либо турбокомпрессоров.Сегодня мы сосредоточимся на одном из этих двигателей, Honda B16. Он был запущен в 1989 году, и первой машиной с таким двигателем была Honda Integra. Блок цилиндров B16 был изготовлен из алюминия, а высота деки блока составляла 203,25 мм. Внутри блока они установили коленчатый вал с рабочим ходом 77,4 мм с поршнями 81 мм и высотой сжатия 30 мм. Длина шатунов B16A составляет 134 мм. Это обеспечило вытеснение 1,6 литра, а отношение R / S составило 1,735.
Блок двигателя покрыт головкой DOHC VTEC. Это был первый двигатель Honda с системой VTEC.
Диаметр впускного клапана составлял 33 мм, выпускного клапана — 28 мм, диаметр штока клапана составлял 5,5 мм.
распределительных валов вращались с помощью ремня ГРМ, который заменялся после каждых 60 000 миль (100 000 км) пробега. Если ремень ГРМ порвется, двигатель изогнет клапаны, однако, этого может не произойти при низких оборотах.
Зазоры клапанов следует проверять через каждые 24 000 миль пробега и при необходимости корректировать. Зазоры клапанов (холод): впуск 0,15-0,19 мм, выпуск 0,17-0,21 мм.
Порядок стрельбы для B16A и B16B был 1-3-4-2.Размер корпуса дросселя B16A составлял 58 мм. Двигатель
Honda B16 относится к двигателям серии Honda B, который также включает двигатели B17, B18 и B20.
Более подробное описание двигателя и всех его версий можно найти ниже. Производство B16A и B16B продолжалось до 2000 года, и за это время инженерам удалось внести многочисленные модификации, разница показана ниже.
В 2000 году B16A и B16B были заменены на K20A.

Модификации и отличия двигателя Honda B16A (B16B)

1.B16A SiR 1 ген. — первое поколение B16. Это был самый легендарный двигатель Honda, который мог развивать мощность 100 л.с. на 1 литр рабочего объема. Вот характеристики кулачка SiR B16A: продолжительность (при подъеме 0,050 дюйма или 1 мм) 230/227 град, подъем 10,6 / 9,4 мм.
Мощность составляла 160 л.с. при 7600 об / мин, крутящий момент составлял 150 Нм при 7000 об / мин, а красная линия была при 8000 об / мин.
Этот двигатель был установлен в Honda Civic SiR, CRX SiR и Integra.
2. B16A SiR 2 gen. это японская версия B16A SiR. Здесь были использованы новые поршни (степень сжатия 10.4) наряду с менее динамичным впускным распределительным валом и размером корпуса дроссельной заслонки 60 мм. Технические характеристики распределительных валов B16A SiR 2 gen следующие: продолжительность (при подъеме 0,050 дюйма или 1 мм) 240/227 град, подъем 10,7 / 9,4 мм. Но все, что не имеет значения, основной модификацией была увеличенная надпись VTEC на крышке клапана. Эти моды обеспечивали 10 дополнительных лошадиных сил, и его мощность достигала 170 л.с. при 7800 об / мин, а крутящий момент 160 Нм при 7300 об / мин, в то время как красная линия была при 8200 об / мин.
Этот двигатель находился под капотом Honda Civic SiR, Del Sol SiR и Integra.
3. B16A1 была версия для европейского рынка. Степень сжатия была снижена до 10,2; его мощность составляла 150 л.с. при 7600 об / мин, а крутящий момент 150 Нм при 7100 об / мин с пределом оборотов в 8,200 об / мин.
Создан для Honda Civic и CRX.
4. B16A2 — здесь использовались распределительные валы со следующими характеристиками: продолжительность (при подъеме 0,050 дюйма или 1 мм) 224/220 град, подъем 10,47 / 9,6 мм. Степень сжатия составляла 10,2, мощность составляла 160 л.с. при 7600 об / мин, а крутящий момент составлял 150 Нм при 6500 об / мин.
Эта версия была установлена ​​в Honda Civic VTi, Civic SiR и Del Sol VTi.
5. B16A3 — этот мотор был разработан для Honda Del Sol. Степень сжатия составляла 10,4, мощность составляла 160 л.с. при 7600 об / мин, а крутящий момент составлял 150 Нм при 6700 об / мин.
6. B16A5 была версия для Honda Civic SiR с автоматической коробкой передач. Мощность составляла 170 л.с. при 7800 об / мин, а крутящий момент составлял 150 Нм при 6300 об / мин.
7. B16A6 был аналогом B16A2 Honda Civic для стран Ближнего Востока и Южной Африки. Мощность была 160 л.с. при 7800 об / мин; и крутящий момент составлял 150 Нм при 6400 об / мин.
8.B16B был топовой версией B16. Этот двигатель был разработан на основе B16A SiR II, который также был довольно мощным, но B16B был новым уровнем.
Они решили использовать блок цилиндров B18 с высотой 212,4 мм; они установили новый коленчатый вал, новые поршни (с коэффициентом сжатия 10,8) и легкие шатуны длиной 142,3 мм. Это увеличило отношение R / S до 1,84.
И это еще не все: они сделали головку для впускных отверстий, установили новые свечи зажигания, размер корпуса дросселя был увеличен до 62 мм, они использовали самые агрессивные распределительные валы, усиленные пружины клапанов, легкие впускные клапаны с более тонкими стержнями и более крупные выхлопная система (2.25 ″ или 57 мм). Размер топливных форсунок составлял 240 куб. вес маховика составлял 7 кг.
Технические характеристики распредвалов Type-R B16B следующие: продолжительность (при подъеме 0,050 дюйма или 1 мм) 243/235 град, подъем 11,5 / 10,5 мм.
Попытки улучшить этот двигатель были успешными, и мощность B16B достигла 185 л.с. при 8 200 об / мин, крутящий момент 160 Нм при 7500 об / мин, а красная линия была установлена ​​на 8 400 об / мин. Головка B20B
может быть обозначена красной крышкой клапана.

Проблемы с двигателем Honda B16 и неисправности

Это может звучать странно, но у этих двигателей нет проблем и недостатков; B16B и B16A — невероятно надежные и долговечные двигатели.Однако прошло много времени, и все эти двигатели B16 уже изношены, и любой компонент может выйти из строя. Вам просто нужно регулярно и с хорошим качеством выполнять обслуживание вашего B16A или B16B, и они будут работать немного дольше.

Honda B16 тюнинг двигателя

B16A NA сборка

Лучшими модами для обычного B16A являются система впуска холодного воздуха, выпускной коллектор B18C 98 Spec R 4-1 (или другой коллектор 4-1) и система выпуска 2.5. Это даст вам до 180 HP.
Хотите 200 л.с. и больше? Затем вы должны также купить впускной коллектор Skunk2 или Type R, кулачки Type R, регулируемые кулачковые шестерни, впускные клапаны Type R, поршни Type R, а также сделать порт и полировать.Hondata поможет вам настроить все эти части производительности.
Все еще хотите больше? Добавьте облегченный маховик TODA, корпус дроссельной заслонки 70 мм, подшипники ACL, топливные инжекторы на 340 куб. См, шпильки головки ARP, распределительные валы Skunk2 Stage 2, направляющие клапанов Supertech из бронзы, клапаны Supertech, пружины клапанов и титановые фиксаторы.
Было бы неплохо установить поршни с высокой степенью сжатия (CR

12) и свечи зажигания NGK 7. Эти улучшения позволят вам получить 220 HP или чуть больше.
Это предел для этого двигателя, который все еще может использоваться для ежедневной езды.

B16B Stroker kit

Вы сделали все, что упомянуто выше, и вам не хватило сил? Тогда вам придется увеличить отверстие до 84 мм. Лучше всего это сделать, заменив родной блок цилиндров на блок цилиндров B20. Затем вы должны настроить ECU, и он даст вам более 250 HP. Однако такой гибрид не будет длиться долго; Вам нужно купить шатуны, поршни и гильзы. Не забудьте установить масляный насос повышенной производительности, масляные форсунки и масляный радиатор.
Еще один способ увеличить мощность — установить стандартную головку B16B на блок цилиндров B20B. Это даст вам около 220 HP.

B16A / B16B Turbo

Прежде чем вы научитесь работать с турбонаддувом B16B / B16A, вам необходимо восстановить двигатель и убедиться в его надежности. Для начала подойдет стандартный B16A или B16B; их внутренние запасы могут выдерживать около 300 л.с.
Основными рабочими деталями, которые вам понадобятся, являются турбонагнетатель TD05-16G (Evolution 8), а также турбо-коллектор и промежуточный охладитель, линия подачи масла и линия возврата масла.Вам также понадобятся перепускная заслонка, выпускной клапан, комплект трубопроводов, топливный насос Walbro 255, топливная рампа AEM, топливный регулятор вторичного рынка, топливные инжекторы на 550 куб. система, широкополосный датчик кислорода воздуха / топлива и ЭБУ Hondata.
Этих апгрейдов будет достаточно, чтобы получить 300 HP и преодолеть 1/4 мили менее чем за 12 секунд.
Мощность может быть больше, но лучше сделать надежный двигатель и купить поршни с низким сжатием (степень сжатия

8,5).Помимо кованых поршней, вам понадобятся штоки вторичного рынка, защита блока, подшипники ACL и шпильки головки ARP. Также потребуется комплексный подход к настройке ГБЦ. Все эти обновления требуют много денег, которые вы можете использовать, чтобы купить что-то вроде Nissan GTR.
Вы можете облегчить себе жизнь и купить нагнетатель B16A Jackson Racing. Наряду с 2,5 ″ выхлопом, вы получите 210+ лошадиных сил.

Сколько тактов в двигателе ВАЗ?

с.) Сколько тактов в двигателе ваз 2106; Двигатели ВАЗ. Двигатель ВАЗ 2106-1000260. Характеристика двигателя ВАЗ 2106. О двигателях LADA 2106 1 .

Сколько лошадиных сил в ВАЗ 21074?

Лада 2107 1.6 MT 21074-30-012 — технические характеристикиОсновные параметрыНазвание комплектации1.6 MT 21074-30-012Тип двигателяРядный, 4-цилиндровыйНагнетатель—Максимальная мощность, л.с. (кВт) при об./мин.72 (53) / 5300

Сколько клапанов на ваз 2106?

Двигатель ВАЗ-2106 (1.6 8 кл. 74.5 л. с.) АвтоВАЗ

Сколько цилиндров в ваз 2106?

ВАЗ-2106, бензиновый, рядный, 4-х цил., 79×80 мм, 1,57 л, степень сжатия 8,5, порядок работы 1-3-4-2, мощность 55,5 кВт ( 75,5 л. с.) при 5400 об/мин, крутящий момент 116 Н-м (11,8 кгс-м) при 3000 об/мин.

Сколько цилиндров в Жигулях?

Двигатель внутреннего сгорания ВАЗ 21011 объемом 1,3 литра является более современным вариантом первого мотора «копейки». Технические характеристикиГоды выпуска1974 – 2006Количество цилиндров4Клапанов на цилиндр2Ход поршня, мм66Диаметр цилиндра, мм79

Какой двигатель на Ваз 2115 инжектор?

Объем двигателя Лада 2115 Самара составляет от 1.5 до 1.6 л. Мощность двигателей Лада 2115 Самара от 68 до 81 л.

В чем разница между двигателями ваз 2103 и 2106?

Мотор ВАЗ 2106 на 1,6 литра стал продолжением ВАЗ 2103 и как следствие 2101. Главные отличия от своих собратьев в поршне с увеличенным до 79 мм диаметром, тогда как блок двигателя остался неизменным. Есть еще инжекторный агрегат 21067, который отличается накрытым ГБЦ от инжекторного мотора Нива- 21214.

В чем разница между ВАЗ 2106 и Ваз 21063?

Автомобиль ВАЗ 21063 имеет достаточно весомые отличия от ВАЗ 2106. Характерным отличием является установка двигателя модели 21011, который имеет рабочий объем 1,295 л. Это самый малый объем двигателя, который когда-либо устанавливался на автомобили ВАЗ 2106 и модификации.

Какой двигатель у жигули?

Объем двигателя Лада 2106 составляет от 1.3 до 1.6 л. Мощность двигателей Лада 2106 от 64 до 75 л. с.

В чем разница между Ваз 2103 и ВАЗ 2106?

2) Решетка у 2103 идёт от края до края, у 2106 только между фарами. 8) На 2103 не было кнопки аварийной сигнализации (некоторые говорят, что всё-таки была, но на экспортных вариантах). 9) Шильдик у ВАЗ 2106 прямоугольный, 10) У тройки двигатель 1452 см3, 77 л.

Какой мотор на 14?

Чаще всего на ВАЗ 2114 устанавливали двигатель ВАЗ 11183 (21114). Стоимость данного двигателя без навесного составляет 88000 руб.

Сколько лошадиных сил в 2114?

Объем двигателя Лада 2114 Самара составляет от 1.5 до 1.6 л. Мощность двигателей Лада 2114 Самара от 77 до 98 л. с.

Сколько тактов в двигателе ВАЗ? Ответы пользователей

Двигатель ВАЗ 2106 1,6 — четырехтактный, карбюраторный, рядный, . Система охлаждения двигателя — жидкостная, . Сколько масла в двигателе, л, 3.75.

Двигатель ВАЗ 2105 появился в 1979 году и с небольшими изменениями смог продержаться на конвейере до 2006 года. . Сколько масла в двигателе, л, 3.75.

Чем больше объём двигателя, тем мощнее машина, и тем, как правило, она больше. Нет смысла ставить малокубатурный мотор на большой автомобиль, .

Характеристики двигателя ВАЗ-21126: мощность, крутящий момент, степень сжатия, ресурс, проблемы, отзывы, цена, купить.

Двигатели, встроенные в ВАЗ-2111 производителем, называются «родными». Цикл работы устройства в машине работает с учетом 4-х тактов.

Двигатель ВАЗ 2106-1000260. Характеристика двигателя ВАЗ 2106. ; Количество цилиндров: 4 ; Рабочий объем цилиндров, л: 1,57 ; Степень сжатия: 8,5 ; Номинальная .

Описание двигателя ВАЗ 2109. Характеристика двигателя. Особенности двигателя девятки.

Двигатель 2101: Тип: карбюраторный бензиновый с верхним расположением . блока цилиндров: чугун Тактность (число тактов): 4 Порядок работы цилиндров: .

16V 1.6і л ВАЗ 211440-26 ; Количество клапанов на цилиндр, 4 ; Ход поршня, 75,6 мм ; Диаметр цилиндра, 82 мм ; Степень сжатия, 11.

Двигатель ВАЗ 2106 1,6 — четырехтактный, карбюраторный, рядный, с верхним расположением распределительного вала. Система охлаждения двигателя — жидкостная, закрытого типа, с принудительной циркуляцией жидкости. Двигатель имеет комбинированную систему смазки: под давлением и разбрызгиванием.

Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий . за два оборота коленчатого вала, то есть за четыре хода поршня (такта).

Сколько тактов в двигателе ВАЗ? Видео-ответы

Принцип работы двигателя. 4-х тактный двигатель внутреннего сгорания (ДВС) в 3D

Принцип работы поршневого, четырехтактного двигателя внутреннего сгорания (ДВС) работающего на бензине.

Как работает двигатель внутреннего сгорания автомобиля?

Из каких элементов состоит двигатель внутреннего сгорания автомобиля? Для чего нужны поршни, коленвал, блок .

Все разновидности двигателей ВАЗ 2101-2107 «Жигули», Нива и Chevrolet Niva

00:00 Вступление 00:08 Мотор жигулей не копия Fiat 124 00:38 Двигатель ВАЗ 2101 1.2 л 02:10 Двигатель ВАЗ 21011 1.3 л .

Монетка на двигатель ребром ВАЗ 2105

8 ТАКТНЫЙ ДВИГАТЕЛЬ — КАК ЭТО РАБОТАЕТ?

Победитель получит: 3 место: 2 бесплатных билета на шоу; 2 место: 2 бесплатных билета + 1 катание на дрифт такси; .

Ресурс двигателя ВАЗ. На живом примере 2114.

Сколько ходит двигатель ВАЗ, какой у него ресурс? Вот конкретный пример. Ресурс двигателей ВАЗ 2110, 2112, 2114, 2115 .

Об авторе

Иван Быстров - главный редактор

Иван Быстров

Здравствуйте! Меня зовут Иван Быстров, и я главный редактор этого сайта. Мне 32 года, я живу в Ярославской области России. Я всегда увлекался автомобилями, всегда хотел узнать больше, но зачастую не мог найти ответы на свои вопросы. Это сподвигло меня на создание проекта, где будет собрано воедино максимальное количество вопросов про автомобили, и на каждый из них будет предложен грамотный ответ! Очень надеюсь, что мой труд поможет всем получить новые знания быстро и без лишних затрат энергии!

Сколько тактов входит в рабочий цикл двигателя ваз

Полный рабочий цикл почти у всех карбюраторных двигателей совершается в каждом цилиндре за два оборота коленчатого вала, т.е. за четыре такта. Такие двигатели называются четырехтактными.

Рабочий цикл начинается с такта впуска, затем следуют такт сжатия, такт расширения (рабочий ход) и такт выпуска.

Такт впуска (рис, а). Во время такта впуска цилиндр заполняется горючей смесью. Кривошип 5 коленчатого вала 6 поворачивается на пол-оборота, а связанный с ним шатун 4 перемещает поршень 3 от верхней мёртвой точки к нижней. В это время впускной клапан 2 открыт, а выпускной клапан 1 закрыт. По мере перемещения поршня увеличивается объем над поршнем, создается разрежение и в цилиндр всасывается горючая смесь. После заполнения цилиндра горючей смесью впускной клапан закрывается.

Такт сжатия (рис. б). За время такта сжатия кривошип коленчатого вала совершает следующие пол-оборота, заставляя поршень перемещаться от нижней мертвой точки к верхней. Оба клапана остаются закрытыми. При этом рабочая смесь сжимается и нагревается, распыленные частицы горючего испаряются и в цилиндре создаются благоприятные условия для быстрого сгорания рабочей смеси. В конце этого такта рабочая смесь воспламеняется электрической искрой.

Такт расширения (рис. в). В начале такта расширения рабочая смесь быстро сгорает. При сгорании выделяется большое количество тепла, давление образующихся в цилиндре газов резко возрастает. Под давлением газов поршень, перемещаясь от верхней мертвой точки к нижней, при помощи шатуна вращает коленчатый вал двигателя. Кривошип коленчатого вала совершает очередные пол-оборота. Оба клапана при этом остаются закрытыми. По мере перемещения поршня объем над поршнем увеличивается, в результате чего давление и температура газов в цилиндре падают. Во время такта расширения газы совершают полезную работу, поэтому этот такт называется рабочим ходом.

Такт выпуска (рис. г). Во время такта выпуска цилиндр очищается от продуктов горения. Кривошип коленчатого вала совершает последние пол-оборота за данный рабочий цикл, а поршень перемещается от нижней мертвой точки к верхней. В это время впускной клапан закрыт, а выпускной открыт. По мере перемещения поршня отработавшие газы выталкиваются из цилиндра в атмосферу через систему выпуска.

На этом один рабочий цикл заканчивается и в той же последовательности начинается новый.

Таким образом, в рабочем цикле четырехтактного двигателя только один такт — такт расширения — является рабочим, остальные три такта вспомогательные и требуют затраты энергии. В одноцилиндровом двигателе вспомогательные такты совершаются за счет энергии, накапливаемой маховиком во время рабочего хода, а в многоцилиндровых двигателях — за счет энергии рабочих ходов, происходящих в это время в других цилиндрах.

Что такое рабочий цикл двигателя

Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.

Что такое мертвые точки и такты ДВС

Основные параметры работы ДВС

Существуют две мертвые точки:

Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Как работает двухтактный мотор

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Принцип работы ДВС. Рабочие циклы двигателя

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

принцип работы двс

Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

4 такта работы двигателя внутреннего сгорания

Большинство современных двигателей внутреннего сгорания — четырехтактные, это значит, что всю из работу можно разделить на 4 этапа — такта . Разобравшись в том, что происходит на каждом из этапов легко понять, как работает двигатель.

Прежде, чем перейти непосредственно к работе двигателя отметим основные элементы его конструкции, это поможет правильно понять описание его работы.

Элементы конструкции ДВС

Поршни перемешаются в цилиндрических расточках, выполненных в блоке цилиндров . Поршни соединены с коленчатым валом при помои шатунов . Газораспределительный механизм с клапанами позволяет соединять рабочую камеру с впускным или выпускным коллектором. Воспламенить топливную смесь позволяет свеча .

Цикл работы двигателя

Основные элементы конструкции двигателя определены, теперь можно разобраться в работе двигателя, как упоминалось ранее цикл его работы состоит из четырех тактов, рассмотрим подробнее каждый из них.

Такт 1
Такт 2

Полученную смесь надо сжать, чтобы при воспламенении она расширилась и переместила поршень. Для осуществления сжатия поршень нужно переместить вверх, клапаны в этот момент должны быть закрыты.

Такт 3

На третьем этапе свеча дает искру, которая воспламеняет смесь, она нагревается и расширяется, толкая поршень вниз. Поршень вращает коленвал.

Такт 4

От продуктов горения нужно избавиться. Для этого открываются клапаны со стороны выпускного коллектора, поршень движется вверх вытесняя газы в выхлопную систему.

После 4 такта вновь наступает первый.

Количество поршней

Таким образом поршень только на третьем этапе вращал коленчатый вал, а на всех остальных наоборот коленвал перемещал поршень. Но откуда на валу возьмется энергия для вращения вала. Можно использовать не один поршень, а несколько. Пожалуй,самым логичным решением будет установка четырех поршней (хотя их может быть и 3, и 6, и 12). Если в двигателе 4 поршня, то каждый из них в один момент находится на разных этапах:

  • первый — всасывает воздух;
  • второй — сжимает смесь;
  • третий — осуществляет рабочий ход;
  • четвертый — вытесняет выхлопные газы.

Для обеспечения плавной работы на валу двигателя может быть установлен маховик.

Устройство автомобилей

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

рабочие циклы двигателей

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

рабочие циклы дизельного двигателя

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)
Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

рабочие циклы двухтактного дизельного двигателя

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Сколько тактов входит в рабочий цикл двигателя ваз

1. Рабочий цикл четырехтактного бензинового двигателя

Рабочий цикл двигателя — это комплекс последовательно чередующихся процессов внутри цилиндра, в результате которых энергия топлива преобразуется в механическую работу.

Двигатели, в цилиндрах которых рабочий цикл совершается за два оборота коленчатого вала (за четыре хода поршня), называют четырехтактными. Если рабочий цикл совершается за один оборот коленчатого вала (за два хода поршня), то двигатели называют двухтактными.

Такт впуска (рис. 1, а). При вращения коленчатого вала 8 (за пол-оборота) поршень перемещается от ВМТ к НМТ. При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре 2 создается разрежение, равное 0,07 ÷ 0,095 МПа, в результате чего свежая горючая смесь, состоящая из паров бензина и воздуха, засасывается через впускной газопровод 3 в цилиндр. Свежая рабочая смесь в результате соприкосновения с нагретыми деталями и остаточными газами имеет температуру в конце такта впуска 75 ÷ 125°С.

Рисунок 1 — Рабочий цикл четырехтактного одноцилиндрового

а — такт впуска; б — такт сжатия; в — такт расширения (рабочий ход); г — такт выпуска; 1 — поршень; 2 — цилиндр; 3 — газопровод; 4 — впускной клапан; 5 — свеча зажигания; 6 — выпускной клапан; 7— газопровод; 8 — шатун; 9 — колен­чатый вал.

Такт сжатия (рис. 1, б). При дальнейшем вращении коленчатого вала поршень пе­ремещается от НМТ к ВМТ. При этом впускной клапан 4 закрывается, а выпускной клапан 6 закрыт. По мере сжатия горючей смеси повышается ее температура и давление. В зависимости от степени сжатия давление в цилиндре в конце такта сжатия может составлять 0,8 ÷ 1,5 МПа, а температура газов — 300 ÷ 450°С.

Такт расширения, или рабочий ход (рис. 1, в). В конце такта сжа­тия горючая смесь воспламеняется от электрической искры, воз­никающей между электродами свечи зажигания 5, и быстро сго­рает, в результате чего температура и давление образующихся га­зов резко возрастают и поршень перемещается от ВМТ к НМТ. Максимальное давление газов на поршень при сгорании для кар­бюраторных двигателей составляет 3,5 ÷ 5 МПа, а температура га­зов — 2100 ÷ 2400 °С.

При такте расширения шарнирно связанный с поршнем ша­тун 8 совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчато­го вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре составляет 0,3 ÷ 0,75 МПа, а температура — 900 ÷ 1200 °С.

Сколько тактов входит в рабочий цикл двигателя ваз

Рабочим циклом двигателя внутреннего сгорания называют совокупность процессов, повторяющихся в цилиндре в такой последовательности: впуск свежего заряда, сжатие, расширение или рабочий ход, выпуск.

Цикл может быть осуществлен либо за четыре, либо за два такта. В первом случае цикл называется четырехтактным, во втором – двухтактным.

Рабочий цикл поршневого двигателя проходит по одной из двух схем, представленных на рис.1. На схеме, изображенной на рис.1,а, представлен рабочий цикл с внешним смесеобразованием (бензиновые и газовые двигатели), а на рис.1,б – рабочий цикл с внутренним смесеобразованием (дизели и бензиновые с непосредственным впрыском).

Рисунок 1 – Схемы рабочего цикла двигателей

а) с внешним смесеобразованием; б) с внутренним смесеобразованием

Рабочий цикл четырехтактного бензинового двигателя

При рассмотрении цикла условно принять, что начало рабочего цикла совпадает с ВМТ, а каждый такт начинается и заканчивается в одной из мертвых точек.

Первый такт – впуск

При вращении коленчатого вала (по направлению стрелки) поршень перемещается из ВМТ в НМТ, впускной клапан открывается, выпускной клапан закрыт. Через открытый клапан цилиндр соединяется с системой впуска. Вследствие гидравлического сопротивления впускного трубопровода, впускного клапана и увеличения объема при перемещении поршня давление в цилиндре становится меньше атмосферного и воздух поступает в цилиндр. Горючая смесь, состоящая из паров мелкораспыленного топлива и воздуха, поступает под действием разряжения из впускного трубопровода в цилиндр, где смешивается с небольшим количеством остаточных газов, оставшихся от предыдущего цикла, и образует рабочую смесь.

При подходе поршня к НМТ давление в цилиндре на 0,01…0,02 МПа меньше атмосферного, а температура смеси вследствие подогрева от контакта с нагретыми деталями двигателя и перемешивания с отработавшими газами повышается до 350…390 К.

Второй такт – сжатие

Такт впуска заканчивается, когда поршень приходит в НМТ. При дальнейшем повороте коленчатого вала поршень перемещается из НМТ в ВМТ и сжимает рабочую смесь. В течение такта сжатия оба клапана остаются закрытыми.

Объем смеси при сжатии уменьшается, а давление внутри цилиндра увеличивается и достигает (в зависимости от степени сжатия) 1,0…1,5 МПа, а температура 600…650 К.

Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня, возможно близком к ВМТ. Поэтому воспламенение топлива в бензиновых двигателях, осуществляемое электрической искрой, обычно производится до прихода поршня к ВМТ.

Третий такт – расширение или рабочий ход

Оба клапана закрыты. Сжатая рабочая смесь воспламеняется и быстро сгорает, образуя большое количество горячих газов, вследствие чего в цилиндре резко увеличиваются температура и давление. Под действием давления газов поршень перемещается к НМТ, газы расширяются и совершают полезную работу.

В начале расширения давление составляет 3…4 МПа, температура 2300…2500 К, а при подходе поршня к НМТ, вследствие увеличения объема, давление снижается до 0,3…0,5 МПа, а температура составляет 1200…1500 К.

Четвертый такт – выпуск

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в атмосферу.

При такте выпуска не достигается полная очистка цилиндра от отработавших газов, поэтому в конце выпуска давление в цилиндре составляет 0,105…0,120 МПа, а температура 700…900 К.

После окончания такта выпуска рабочий цикл повторяется в рассмотренной выше последовательности.

Только при такте расширения совершается полезная работа, а остальные такты являются вспомогательными и поршень при этих тактах перемещается за счет энергии вращающегося коленчатого вала с маховиком и работы других цилиндров (в многоцилиндровых двигателя).

Рабочий цикл четырехтактного дизеля

Рабочий цикл четырехтактного дизеля, как и рабочий цикл четырехтактного бензинового двигателя, состоит из четырех повторяющихся тактов: впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако рабочий цикл дизеля существенно отличается от рабочего цикла бензинового двигателя. В цилиндр дизеля поступает чистый воздух, а не горючая смесь. Воздух сжимается с высокой степенью сжатия, вследствие чего значительно повышается его давление и температура. В конце сжатия в нагретый воздух из форсунки впрыскивается мелкораспыленное топливо, воспламеняющееся не от электрической искры, а от соприкосновения с горячим воздухом.

Первый такт – впуск

При движении поршня от ВМТ к НМТ давление в цилиндре снижается вследствие гидравлического сопротивления воздухоочистителя, впускного трубопровода и через открытый впускной клапан в цилиндр поступает очищенный воздух. Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура его повышается, но меньше, чем в бензиновом двигателе, так как количество остаточных газов в цилиндре дизеля меньше, чем в бензиновом двигателе. Кроме того, подогрев воздуха происходит и от контакта с нагретыми деталями двигателя, и в конце такта впуска температура воздуха достигает 320…350 К, а давление 0,08…0,09 МПа.

Второй такт – сжатие

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и при подходе поршня к ВМТ составляют: давление 4,0…5,5 МПа, а температура 850…1000 К. В конце такта сжатия с помощью насоса через форсунку в цилиндр под высоким давлением впрыскивается мелкораспыленное топливо. Давление впрыскивания составляет 13,0…18,5 МПа. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с воздухом и воспламеняются.

Третий такт – расширение или рабочий ход

При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличивается давление и температура образовавшихся газов.

В начале такта расширения давление газов составляет 6,0…8,0 МПа, а температура 2100…2300 К.

Под действием давления поршень из ВМТ перемещается в НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют: давление 0,2…0,4 МПа, температура 800…1200 К.

Четвертый такт – выпуск

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в атмосферу.

В конце такта выпуска давление газов 0,11…0,12 МПа, температура 800…900 К.

После такта выпуска рабочий цикл дизеля повторяется.

Рабочий цикл двухтактного карбюраторного двигателя

В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы впуска и выпуска совмещены по времени с процессами сжатия и расширения. В отличие от четырехтактного двигателя очистка цилиндра от отработавших газов и наполнение его свежим зарядом происходит при положении поршня вблизи НМТ. При этом очистка цилиндра от отработавших газов осуществляется не выталкиванием их поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью.

На рис.2 представлена схема двухтактного карбюраторного двигателя с кривошипно-камерной продувкой.

Рисунок 2 – Схема двухтактного карбюраторного двигателя

1 – впускное окно; 2 – выпускное окно; 3 – свеча зажигания; 4 – цилиндр; 5 — поршень; 6 – перепускное окно; 7 – канал; 8 – герметичный картер

В этом двигателе нет специального механизма газораспределения. Вместо него цилиндр имеет окна: впускное окно 1, соединяющее цилиндр с карбюратором; выпускное окно 2 и перепускное окно 6, соединяющее цилиндр с герметичным картером при помощи канала 7. Перемещающийся внутри цилиндра поршень в определенной последовательности открывает и закрывает окна, выполняя функции механизма газораспределения. В цилиндр двухтактного двигателя с кривошипно-камерной продувкой горючая смесь поступает через картер. Для подготовки двигателя к работе необходимо сделать два подготовительных хода: первый – впуск горючей смеси в картер; второй – перепуск горючей смеси из картера в цилиндр.

Поршень 5 перемещается снизу вверх и боковой поверхностью сначала закрывает перепускное окно 6, а затем и выпускное 2. В цилиндре происходит сжатие рабочей смеси, а в картер вследствие разряжения из карбюратора поступает горючая смесь. При подходе поршня к ВМТ между электродами свечи зажигания появляется электрическая искра, в результате чего рабочая смесь в цилиндре воспламеняется и сгорает.

Образовавшиеся горячие газы расширяются и давят на поршень, вследствие чего он опускается вниз, совершая рабочий ход. В конце рабочего хода поршень сначала открывает выпускное окно 2, и отработавшие газы из цилиндра через глушитель выходят в атмосферу. Опускаясь ниже, поршень открывает перепускное окно 6, и горючая смесь по каналу 7 поступает в цилиндр, заполняет его и вытесняет отработавшие газы. Незначительная часть горючей смеси вместе с отработавшими газами выходит в атмосферу и не принимает участия в рабочем цикле.

Примечание: Параметры цикла (давление и температура) соответствуют параметрам четырехтактного бензинового двигателя.

Двухтактные двигатели, работающие по данной схеме газообмена, имеют сухой картер, т.е. в картере отсутствует смазочный материал. Для смазывания трущихся деталей двигателя смазочный материал добавляют к топливу в пропорции 1:20 по объему. Следовательно, горючая смесь в виде воздуха, топлива и масла обеспечивает при своем движении одновременно и смазку двигателя.

На рис.3 показан принцип действия четырех- и двухтактного двигателя внутреннего сгорания.

Рабочий цикл четырехкратного двигателя проходит за

Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.

Работа двигателя

Как протекает рабочий цикл четырехтактного карбюраторного двигателя?

Рабочий цикл четырехтактного карбюраторного двигателя

Рабочий цикл (рис. 2, а) совершается за два оборота коленчатого вала. Цикл состоит из пяти процессов: впуска, сжатия, горения, расширения и выпуска. Эти пять рабочих процессов происходят за четыре хода поршня и составляют четыре такта: впуск, сжатие, рабочий ход и выпуск. Рабочий ход состоит из двух рабочих процессов – горения и расширения. Остальные такты состоят каждый из одного рабочего процесса.

Впуск – это процесс заполнения цилиндра двигателя свежим зарядом (горючей смесью). Поршень движется от в. м. т. к н. м. т. Объем над поршнем увеличивается. В цилиндре создается разрежение, и через открытый впускной клапан цилиндр заполняется горючей смесью, которая внутри цилиндра смешивается с продуктами сгорания, оставшимися от предыдущего цикла. Так образуется рабочая смесь.

Когда коленчатый вал повернется на 180°, цилиндр заполнится рабочей смесью, впускной клапан закроется и впуск закончится. В конце впуска давление в цилиндре двигателя меньше атмосферного (0,70 – 0,85 кг/см

2 ). Это объясняется наличием сопротивлений, которые встречают на своем пути воздух при прохождении через воздушный фильтр и горючая смесь при прохождении через карбюратор, трубопроводы и клапаны.

При создании двигателей стремятся повысить давление рабочей смеси в конце впуска, так как, чем выше давление, тем больше вес свежего заряда, тем лучше наполнение цилиндра, тем больше развиваемая двигателем мощность. Соприкасаясь с нагретыми частями двигателя и продуктами сгорания, горючая смесь нагревается, и в конце впуска температура ее достигает 70 – 130° С. Это обеспечивает хорошее испарение бензина. Но чем выше температура рабочей смеси, тем меньше ее удельный вес. Поэтому температуру рабочей смеси нельзя чрезмерно повышать во избежание уменьшения мощности двигателя. Кроме того, повышение температуры рабочей смеси при впуске может вызвать ее самовоспламенение во время такта сжатия.

Сжатие – процесс уменьшения объема рабочей смеси в цилиндре, в результате которого быстрее и полнее сгорает рабочая смесь, повышается экономичность и мощность двигателя. Поршень движется от н. м. т. к в. м. т. при закрытых клапанах и сжимает рабочую смесь.

К концу сжатия давление в цилиндре возрастает до 7 – 12 кг/см

2 , а температура – до 350 – 400° С. Повышение температуры и давления определяется степенью сжатия. Степень сжатия – это отношение полного объема цилиндра к объему камеры сгорания. Чем выше степень сжатия, тем выше давление и температура в конце сжатия.
Рис. 2. Рабочий цикл: а – четырехтактного двигателя; б – двухтактного двигателя
Но величина степени сжатия ограничивается свойствами применяемого в двигателе горючего, его антидетонационными качествами. Чем выше октановое число бензина, тем выше допускаемая степень сжатия. Современные двигатели имеют степень сжатия 6 – 7,5, и только двигатели легковых автомобилей высокого класса, работающие на специальных бензинах, имеют более высокую степень сжатия. Несоответствие степени сжатия антидетонационным качествам бензина приводит к возникновению детонации.

Четвертый такт выпуск.

Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.

Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.

Рабочий цикл двигателя заканчивается четвертым тактом — выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота. В двигателях, работающих по четырехтактному циклу, полезная работа совершается только в период такта расширения (рабочего хода), когда поршень перемещается пол действием расширяющихся газов, поворачивая коленчатый вал на 180е Остальные три такта являются подготовительными и выполняются при поворачивании коленчатого вата на 540° за счет инерции маховика И работы других цилиндров (в многоцилиндровых двигателях).

Работа двигателя, рабочий цикл

Рабочий цикл из двух тактов

Одноцилиндровый двухтактный двигатель работает по-другому. Здесь все четыре действия происходят за один полный оборот коленвала. При этом поршень делает только два такта (расширения и сжатия), двигаясь от ВМТ к НМТ и обратно. А впуск и выпуск являются частью этих двух тактов. Подробней принцип работы двухтактного двигателя внутреннего сгорания можно описать следующим образом.
Газы от сгорания топливной смеси толкают поршень вниз от ВМТ. Примерно на середине хода поршня в гильзе цилиндра открывается выпускное отверстие, через которое часть газов выбрасывается в патрубок глушителя. Продолжая двигаться вниз, поршень создаёт давление, благодаря которому в цилиндр поступает новая порция топлива, одновременно продувая его от остатков сгоревших газов. Подходя к ВМТ, поршень сжимает смесь и система зажигания воспламеняет её. Снова начинается такт расширения.

В авиамоделестроении широко используется двухтактный дизельный двигатель, его принцип работы тот же, что и у бензинового. Разница в том, что смесь топлива с воздухом самостоятельно воспламеняется в конце цикла сжатия. Горючим для таких моторов служит смесь эфира с авиационным керосином. Воспламенение этого горючего происходит при гораздо меньшей степени сжатия, чем у двигателей на традиционном дизельном топливе.

Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый «насосный» эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего «насосный» эффект и прорыв газов быстро прогрессируют. Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала «видимого» сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр. Поскольку горение смеси — химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и «растягивается» по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая — при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8. Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко — свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh — рабочий объем цилиндра (Vh = Fn.S), Fn — площадь поршня; S — ход поршня; VKc — объем камеры сгорания. Степень сжатия — величина чисто геометрическая. По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже — порядка 1,1-1 ,5 МПа. При приближении поршня к ВМТ начинают «работать» так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы «вытесняется» в зону камеры сгорания, образуя потоки определенного направления. Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу — турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации. При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра. При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец. Стойкую к износу пару трения «кольцо-цилиндр» образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра. При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше «перекладка», но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень. Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала. Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна — так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *