Почему падает напряжение с 390 до 367 вольт?
Потребители в основном асинхронные двигатели, частотные регуляторы скорости, электронное управление . Длина питающей линии 350 метров. Без нагрузки напряжение 390 вольт , а при включении нагрузки падает на 20-30 вольт.
В вопросе не написано самое главное — сечение питающего провода. Если сечение не соответствует проходящему току, то провода будут греться, а напряжение падать.
Много и других вопросов возникает. Где напряжение меряете? Наверняка между двумя фазами. Например, между первой и второй. А не пробывали замерять напряжение между второй и третьей и между первой и третьей. Только замерив напряжение между всеми фазами можно делать какие-то умозаключения. Возможно фазы нагружены неравномерно. Неплохо бы замерить так же напряжение между всеми фазами и нулевым проводом. Возможно диаграмма напряжений у вас так раскорячена, что непонятно почему все это еще умудряется работать.
Еще есть вопрос о количестве индуктивной нагрузки. Если двигателей и трансформаторов включено много, то часть энергии уходит в реактивную составляющую. И чтобы не переплачивать за электроэнергию, нужно уменьшить косинус Фи. Это достигается включением в нагрузку конденсаторов.
Вот когда все будет в норме, тогда и вопрос отпадет сам собой. Но напряжение под нагрузкой все равно не может быть больше 380В.
просадка напряжения
Sergo555
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 3
Регистрация: 24.12.2005
Пользователь №: 4523
Victor195002
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 824
Регистрация: 15.4.2007
Из: Москва
Пользователь №: 8550
savelij®
![]()
Просмотр профиля
Группа: Модераторы
Сообщений: 13405
Регистрация: 30.5.2006
Из: Санкт-Петербург
Пользователь №: 5663
Sergo555
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 3
Регистрация: 24.12.2005
Пользователь №: 4523
Victor195002
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 824
Регистрация: 15.4.2007
Из: Москва
Пользователь №: 8550
Напряжение источника (как генератора напряжения) не падает- увеличивается падение напряжения на элементах схемы, в том числе и на внутреннем сопротивлении самого источника.
gomed12
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 6798
Регистрация: 24.5.2007
Из: Москва, Ю. Бутово
Пользователь №: 8743
Напряжение источника (как генератора напряжения) не падает- увеличивается падение напряжения на элементах схемы, в том числе и на внутреннем сопротивлении самого источника.
Напряжение (разность потенциалов на выходных клеммах) — уменьшается. Не изменяется ЭЛЕКТРОДВИЖУЩАЯ СИЛА (ЭДС). Падение напряжения — разность между ЭДС и выходным напряжением — есть потери на внутреннем сопротивлении источника (генератора, трансформатора, батареи электрохимических элементов). Если в качестве источника рассматривать электросеть, то добавляется сопротивление проводов электролинии, защитных и коммутационных аппаратов, переходные сопротивления в точках контакта. Потери прямо пропорциональны произведению силы тока на величину сопротивления (сумму всех перечисленных). Таким образом, уменьшая сопротивление нагрузки, мы увеличиваем силу тока, а значит и потери. Это выражается в уменьшении напряжения, подводимого к нагрузке, т.е. — к "просадке" напряжения сети.
Вообще же — максимальную мощность от источника (сети) можно "взять" только в случае, когда сопротивление нагрузки будет равно внутреннему сопротивлению источника. Тогда половина мощности, развиваемой источником, будет выделяться на нагрузке, а половина — будет нагревать сам источник и соединительные провода. Напряжение в цепи будет равно половине ЭДС, а КПД — 50%. При дальнейшем снижении сопротивления нагрузки мощность, выделяемая на ней, станет меньше (и даже меньше, чем рассеиваемая внутри источника).
Victor195002
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 824
Регистрация: 15.4.2007
Из: Москва
Пользователь №: 8550
Вы правы, просто, как говорит Г. И. Атабеков («ТОЭ»), «в теории электрических цепей пользуются идеализированными источниками электрической энергии: источником напряжения и источником тока. Им приписываются следующие свойства.
И с т о ч н и к н а п р я ж е н и я (или источник э. д. с.) представляет собой активный элемент с двумя зажимами, напряжение на которых не зависит от тока, протекающего через источник…». Далее для приведения этого идеализированного источника напряжения к реальному и вводится понятие внутреннего сопротивления, справедливо использованное Вами. Думается, что в данной теме внутреннее сопротивление источника напряжения составляет весьма незначительную долю от сопротивления, вызывающего видимые «просадки» напряжения.
Roman_D
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 1137
Регистрация: 13.10.2007
Из: Рига
Пользователь №: 9607
ЗДС=напряжение на клемме+падения напряжения внутри ЭДС, значит при большем сопротивлении (меньшем токе) падение напряжения внутри меньше U=Ir
. напряжение на клеммах больше.
при меньшем сопротивлении (большем токе), напряжение на клеммах "источника" (это не розетка) УМЕНЬШАЕТСЯ.
haramamburu
![]()
Просмотр профиля
Группа: Пользователи
Сообщений: 4022
Регистрация: 27.9.2009
Из: Дмитров
Пользователь №: 15685
Илмир, мы вас 9 лет ждали, чтоб узнать об этом))))
Спасибо вам за это. и за то что подняли так всем нужную.. и к счастью найденную тему..
разумеется Гость_Илмир, у источника есть внутренне сопротивление, что и учтено з-м ОМА для полной цети.
но, даже если и идеализировать, и принять, что внутреннего сопротивления источника нет или пренебрежительно мало. В конце нагруженной линии (в розетке) все равно будет "просадка"
Научный форум dxdy
Так было бы в случае идеального источника, у реального есть внутреннее сопротивление. Т. е.
. В этом случае величиной
по сравнению с
можно пренебречь, и напряжение на нагрузке оказывается максимально возможным, равным
. Но вместе с тем это означает, что ток через нагрузку стремится к нулю.
В Вашем примере — включается электрический обогреватель — сопротивление
всей нагрузки, подключенной к сети, уменьшается . При этом и напряжение на нагрузке уменьшается. Теперь представьте себе, что до включения нагревателя к той же розетке была подключена настольная лампа. От подключения нагревателя сопротивление лампы не меняется, но напряжение
на лампе, как мы выяснили, уменьшается. Естественно, яркость лампы уменьшается.
Замечу, что напряжение как функция нагрузки и величина нагрузки — широко употребляемые, но таящие опасность неверной интерпретации выражении. Очень часто, когда говорят об увеличении электрической нагрузки , подразумевают увеличение потребляемого тока или, что эквивалентно, уменьшение сопротивления нагрузки. Если об этом забыть и под увеличением нагрузки подразумевать увеличение сопротивления нагрузки, легко прийти к неверным выводам.
— Пт ноя 13, 2009 21:54:02 —
Постоянным по возможности поддерживается величина
(ЭДС). А напряжение на нагрузке — уж как получится. Желательно обеспечить возможно близкое к нулю внутреннее сопротивление
— например, увеличивать поперечное сечение проводов линии электропередачи (местной, не высковольтной) и трансформатора на подстанции.
PapaKarlo , Someone , спасибо, теперь понял.
Тогда задам еще несколько вопросов в продолжение темы:
1) а корректно ли считать, что напряжение определяется только сопротивлением?
2) Правильно ли я понимаю, что если ток переменный, то все приведенные рассуждения остаются в силе, только с заменой тока и напряжения на их действующие значения?
3) А ведь, вообще говоря, нагрузка определяется мощностью потребителя, т.е. количеством энергии, которое нужно ему для работы. Кроме того, я видел, что (возвращаясь к приведенному примеру) на местном трансформаторе на даче указана его максимальная мощность (максимум, что он может выдать, как я понимаю). Так вот вопрос в том, что произойдет, если потребители будут требовать большую мощность, чем трансформатор может отдать?
4) И еще — правда ли, что мощность источника — это 
Такое часто случается при напряжении в сети меньше чем 180 вольт. Если все работает при таком напряжении, то это не очень хорошо влияет на приборы и процесс работы проходит более длительное время.
Выделим несколько основных причин низкого напряжения:
- Сечение кабеля, который входит в дом неправильное;
- Подключение выключателя выполнено не правильным образом;
- Трансформатор подстанции перезагружается или частично вышел из строя;
- Сечение магистральной линии маленькое;
- Перекошенные фазы.
Это были перечислены самые распространенные причины. Если вы поняли что причина низкого напряжения в вашем доме такая как в 1-ом, 2-ом или 6-ом пункте, то исправление причины можно выполнить самостоятельно.
Если вам подходят остальные 3 причины или одна из них, то вам стоит обратиться в обслуживающие станции.
При включении нагрузки падает напряжение в сети
_________________Я ДУРАК ОЛЕНЬ И РАК ОХЗОХОХО ШКОЛА ДУРАК АХАХАХА ПРТЛПЛГЛАУВВЧО584833723822785575834ОАОАЛУОВОЫОЦЦЫВС уважением Андрей.Серенада, Серенада РЭ-308, Эльфа 201-3С, Парус 310СА, PHILIPS AE 2430.
_________________
only pure true norwegian blackx
К чему ведет низкое напряжение в сети
- — значительное ухудшение условий пуска всех типов двигателей и устройств на базе двигателя;
- — при запуске электродвигателя увеличивается пусковой ток;
- — перегрев проводов вплоть до оплавления изоляции и вероятность возгорания от короткого замыкания;
- — уменьшения яркости свечения ламп или их постоянное моргание, что приводит к дискомфорту проживания в доме;
- — уменьшение срока службы бытовых электроприборов;
- — нестабильная работа чувствительной к электропитанию приборов;
- — значительное ухудшение характеристик работы электроприборов.
Пониженное напряжение (провал и просадка)
- Включение в сеть мощного потребителя (электродвигателя, компрессора и т.д.)
- Временное явление при устранении других неполадок сети
-
Временное падение амплитуды напряжения. Провал от просадки отличается длительностью неполадки: при провале счет идет на периоды синусоиды (десятые доли секунды), а при просадке пониженное напряжение наблюдается не менее нескольких секунд.
- При серьезном снижении напряжение возможно отключение электрооборудования, перезагрузка компьютера и др.
Меры предупреждения и подавления:
- По возможности – подключение нагрузок с высоким пусковым током по выделенной линии
- Понижение пусковых явлений, например, за счет переключения конфигураций звезда/треугольник
- Применение электронных устройств таких, как инверторы (частотники)
- В случае просадок поможет использование ИБП
Повышенное напряжение (всплеск, перенапряжение)
- Схемы заземления с высоким импедансом
- Отключение мощного потребителя
- Пробой фаз в трехфазной сети
- Неравномерность потребления электроэнергии
-
Временное повышение амплитуды напряжения. Всплеск от перенапряжения отличается длительностью: всплеск, аналогично провалу, является более короткой неполадкой (десятые доли секунды), а перенапряжение, аналогично просадке, длится не менее нескольких секунд.
- Ошибки в данных
- Мерцание освещения
- Износ электрических контактов и изоляции
- Повреждение полупроводниковых приборов
- Повышение силы тока и, как следствие, срабатывание автоматических выключателей
Меры предупреждения и подавления:
- Лучшей защитой является использование ИБП
Низкое напряжение в сети: что делать, как поднять, причины

Без электричества сегодня как без рук. Оно «дает жизнь» десяткам бытовых агрегатов, освещению. Стандартное напряжение в сети – 220 вольт. С таким работает большая часть электро- и осветительных приборов. Иногда напряженность резко падает сразу на 40-60 вольт.
Такое состояние сети считается критическим, низким. Проводка перестает исправно работать. В доме низкое напряжение в сети, что делать, как увеличить? Прежде всего, определить – от кого исходит проблема: от поставщика или потребителя электроэнергии.
В первом случае помогут коллективные письма и жалобы, во втором – срочные и грамотные меры.
Что такое провалы напряжения в сети и как с ним бороться?
Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей. Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба. В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.
Что такое провал напряжения?
В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.
Осцилограмма провала напряжения
Характеризующие показатели
Для описания понижения амплитуды напряжения используются следующие показатели:
δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;
∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн
Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.
Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.
Причины появления провалов
Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:
- Пусковые токи.
- Колебания напряжения при коротком замыкании.
- Внезапное значительное увеличение нагрузки.
- Другие причины сетевого происхождения.
Рассмотрим подробно каждый из перечисленных факторов.
Токи включения
Образование токов включения, например, при старте мощных электродвигателей или другого устройства — самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.
Образование провала напряжения при запуске электродвигателя
Обозначения:
- Т1 – Понижающий трансформатор.
- RZ – Полное сопротивление на вводе питания.
- RZ1-RZ3 — Полные сопротивления цепей потребителей.
- М – мощный асинхронный двигатель.
С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.
Короткие замыкания
Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.
КЗ в сетях с низким напряжением.
Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.
Образование провала вследствие КЗ в цепи потребителя 2
Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.
На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс. То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение. Эти правила работают как в сетях с низким, среднем и высоким напряжением.
КЗ в сетях с напряжением среднего класса.
Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:
- Различные виды земляных работ, в ходе которых может быть нанесено повреждение кабельной линии.
- Пробои в местах соединений.
- Старение изоляционного покрытия.
- Воздействие природных и техногенных факторов.
При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.
КЗ в высоковольтных линиях.
В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.
Большие нагрузки
При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз. В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания. Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.
Провалы сетевого происхождения
Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:
- топология цепи;
- величина полного сопротивления проблемного участка;
- текущая мощность нагрузки и источника электрической энергии (генератора).
Для более детального представления, рассмотрим пример, представленный на рисунке ниже.
Провалы сетевого происхождения
Допустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.
Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1. То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения. Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.
Допустимые провалы напряжения по ГОСТ
Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:
- Величина остаточного напряжения.
- Длительность.
Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.
Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.
Влияние провалов на работу электрооборудования
Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:
- Понижению интенсивности светового потока, производимого источниками с нитью накала.
- Снижению чувствительности радио- и телеприемников.
- Нестабильности работы рентгеновских установок.
- Ложным срабатываниям электронных систем управления.
- Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
- Изменению характеристик преобразователей напряжения.
- Падение мощности электродвигателей, что приводит к электропотерям и износу.
Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.
Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.
Финансовая сторона вопроса
Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:
- Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
- Ремонт вышедшего из строя оборудования.
- Потери сырья и т.д.
Как бороться с провалами напряжения?
Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.
Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.
Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.