Физика подвески и рулевого управления. Часть 1. Пружины
Начинаю новую рубрику записей, посвященную немаловажным узлам автомобиля — подвеска и рулевое управление. Если в Ваших планах нет изменения конструкции авто, то расчеты, которые мы будем здесь проводить, наврядли будут Вам полезны. Но вот если в планах доработка авто, то они придутся в самый раз.
Почему я решил начать данную рубрику? Потому что тюнинг авто необходимо начинать с подвески и тормозов. В большинстве случаев модернизация подвески производится методом перебора запчастей, что неслабо бьет по карману. Здесь я постараюсь рассмотреть задачи, которые помогут сэкономить время и деньги, тем самым получить желаемый результат.
Сегодня я напишу про такую простую деталь автомобиля как пружина подвески. Зачастую модернизация подвески начинается именно с этого узла. Почему? Ну, если спросить профессионального тюнера или гонщика, то он ответит, что это необходимо для настройки баланса автомобиля при торможении и в поворотах. Ну, а сели спросить владельца какой-нибудь заниженной Приоры, то, скорее всего, ответ будет: потому что круто смотрится=)
Итак, пружина подвески — это деталь, которая обеспечивает реакцию изменения клиренса на силовое воздействие дорожного покрытия или в результате маневров автомобиля. Кроме того, пружина с аммортизатором обеспечивают и стационарный клиренс.
Работает пружина просто: при воздействии некоторой силы происходит её сжатие на конкретную величину. Эта величина находится из закона Гука:
где х — это изменение длины,
F — действующая на пружину сила,
k — коэффициент жесткости.
В стационарном состоянии (т.е. когда авто не подвижен) силой является вес автомобиля. При развесовке автомобиля по осям 50/50 и наклоне оси пружины 0 градусов на каждую пружину действует сила, равная:
F = mg / 4,
где
m — масса автомобиля,
g — ускорение свободного падения.
Тут нужно отметить следующие моменты:
1. Развесовка 50/50 — это редкость
2. Нулевой наклон оси пружины — тоже редкость.
Тогда перепишем силу, действующую на реальную пружину подвески:
F = mg * Y* cos(a) /2,
где
m — масса автомобиля,
g — ускорение свободного падения,
Y — коэффициент развесовки на данную ось (при развесовке 60 перед, 40 зад он будет равен 0,6 для передней пружины, 0,4 для задней),
а — угол наклона пружины.
Если же пружина работает в паре в газовым аммортизатором, то в стационарном состоянии на пружину действует меньшая сила:
F = mg * Y* cos(a) /2 — N,
где:
m — масса автомобиля,
g — ускорение свободного падения,
Y — коэффициент развесовки на данную ось (при развесовке 60 перед, 40 зад он будет равен 0,6 для передней пружины, 0,4 для задней),
а — угол наклона пружины,
N — сила реакции штока.
Теперь об изменении длины под действием силы. Как мы разобрались ранее данная величина находится из закона Гука:
Если с силами мы разобрались, то теперь поговорим о коэффициенте жесткости пружины. Для идеально цилиндрической пружины он равен:
k = G * d^4 / ( 8 * n * (D-d)^3 ),
где:
G — модуль сдвига (зависит от материала пружины),
d — диаметр прутка,
n — количество витков,
D — наружний диаметр пружины.
Какие выводы можно сделать?
1. Коэффициент жесткости не зависит от длины пружины, но зависит от количества витков, поэтому когда мы срезаем один или два витка, происходит увеличение коэффициента жесткости.
2. Увеличение толщины прутка на 10 процентов при тех же остальных параметрах дает увеличение коэффициента жесткости почти на 50 процентов. Это связано с тем, что коэффициент жесткости прямопропорционален диаметру прутка в четвертой степени.
3. Коэффициент жесткости зависит от материала, из которого сделана пружина.
Теперь поговорим о клиренсе в стационарном режиме. Клиренс определяется как раз изменением длины пружины под действием силы тяжести.
Если мы хотим сохранить клиренс, но ужесточить подвеску, нам необходимо изменить параметр х в сторону уменьшения за счет увеличения коэфициента жесткости, при этом на столько же, насколько изменили значение х, необходимо выбрать пружину короче. Если мы увеличим только жесткость, но при этом длина пружина останется прежней, авто станет жестче, но при этом приподнимется.
Если мы хотим приподнять машину, но сохранить жесткость, то необходимо использовать более длинные пружины, но с тем же коэффициентом жесткости. На чем хотелось бы сакцентировать внимание: если происходит изменение клиренса одной из осей, а клиренс второй оси остается прежний, то автоматически происходит изменение распределения веса по осям. Если мы приподняли заднюю часть, то баланс веса смещается вперед, соответственно, сила, действующая на задние пружины становится меньше, а значит и параметр х тоже уменьшается. Этот прием часто применяется для снижения вероятности пробуксовки передней оси на переднеприводных автомобилях. Наиболее популярный метод сохранения жесткости с увеличением клиренса — это установка проставок под те же пружины или на опорную чашку. При таком подходе сама пружина сжимается под весом авто почти так же, как и до доработки, с небольшой поправкой на перераспределение веса по осям, но за счет проставок дорожный просвет увеличивается на толщину проставки.
Параметр х очень важен для стойки, так как у штока аммортизатора имеется некоторый участок примерно в треть длины, который в стационарном состоянии должен находиться внутри аммортизатора. Это необходимо для того, чтобы аммортизатор работал не только на отбой, но и на разгрузку. Если Вы поставите пружины настолько жесткие, что после опускания автомобиля с домкрата пружина не сожмется на необходимый ход штока, то в процессе эксплуатации аммортизаторы очень быстро выйдут из строя. Кроме того, неправильно подобранное значение х повлияет и на управляемость автомобиля — неправильно настроенная ось будет подпрыгивать на каждой кочке и в поворотах.
Ну, и в заключение поговорим о понятии "преднатяг". Если пружина ставится соосно с аммортизатором, то преднатяг определяется разницей между длиной пружины и длиной вытянутого штока. Т.е. это та часть значения х, которая сохраняется даже при подъеме авто на подъемнике. На само значение х преднатяг не влияет. Если говорят, что преднатяг нулевой, то это значит, что при разборе и сборе стойки Вам не понадобятся стяжки пружин.
Элементы автомобильных подвесок, упругие элементы и амортизаторы. Часть 4
Продолжим разбираться с составляющими автомобильных подвесок. До этого мы изучали неподрессоренные элементы, то есть те железяки, которые жестко прикручены к колесам, и чей вес не лежит на упругих деталях. Вес этих всех железяк называется неподрессоренной массой. А вот на упругих элементах лежит масса подрессоренная, к ней относится все то, на что воздействие от колес передается через упругий элемент. К таким элементам относятся рессоры, витые пружины, торсионы, пневмобаллоны, гидропневматические стойки и некоторые экзотические приблуды)
Так, про рессоры мы уже говорили, перейдем сразу к самому популярному упругому элементу — к пружине. Состоят они из стального прута, скрученного в спираль, то есть это компактный торсион, ибо прут в пружине точно так-же работает на скручивание, однако сама пружина работает на сжатие!
Пружинки бывают разные, основная характеристика автомобильной пружины пружины — жесткость сжатия и характеристика этой жесткости, так, обычная цилиндрическая автомобильная пружина обладает линейной характеристикой на сжатие, это означает, что усилие при сжатии растет прямо-пропорционально уменьшению высоты пружины, вот цилиндрическая пружина и ее типичная характеристика
Эта характеристика зависит от таких параметров, как диаметр пружины, шаг и толщина прутка, проще понять из картинки)
Из вышеприведенной картинки, напрашивается вывод, что комбинируя эти параметры можно делать пружины с нелинейными характеристиками, ибо мы можем сделать переменным как шаг, так и диаметр с толщиной прутка, а можем и все вместе) Как например в пружинах мини-блок, или в народе бочкообразных.
Такие пружины имеют прогрессивную характеристику и при этом, компактный размер, в ней сочетаются сразу три переменных параметра.
Также часто используются пружины с переменным шагом, с плавным или резким изменением.
Используются они в основном в автоспорте. Переход шага пружины задает кривую прогрессивной характеристики. Делается это для того, чтобы сохранить мягкость пружины на малых ходах и увеличить жесткость на больших ходах подвески и увеличенной нагрузке на колесо, например в повороте для уменьшения крена. При увеличении нагрузки участок пружины с малым шагом смыкается и в работе остается участок с бОльшим шагом и бОльшей жесткостью.
В спортивных подвесках, особенно в койловерах, можно наблюдать дополнительную пружину, но в работе подвески она не участвует, ее предназначение — не дать покинуть посадочное место основной пружине на полном вылете штока амортизатора, при нагрузке малая пружина смыкается и ведет себя как проставка, для этого ее витки имеют прямоугольное сечение. Делается это в тех случаях, когда длина подобранной при настройке подвески пружины в свободном состоянии не совпадает с длиной амортизатора.
Кроме того, пружины могут иметь и изогнутую форму, если того требуют геометрические параметры подвески
Пружины являются самым популярным и самым универсальным упругим элементом, применяемым в автомобильных подвесках, все благодаря надежности, простоте, а главное — возможности задания необходимых характеристик, в том числе и прогрессивных, при низкой стоимости.
Далее упомянем торсионы, которые являются теми-же пружинами, но не свернутыми в спираль, и работает торсион на скручивание, и только в одном направлении — в направлении закручивания. Воспринимает торсион моментную нагрузку и имеет линейную характеристику. Максимальный воспринимаемый торсионом момент определяется диаметром прута, а максимальный угол закручивания — длиной торсиона.
Торсионы получили широкое распространение в технике с повышенной проходимостью и грузоподъемностью, обусловлено это тем, что с таким типом упругого элемента возможно создать подвеску с очень большим ходом, и при этом с линейной характеристикой, также торсион не занимает места в вертикальной плоскости и его возможно полностью поместить в корпус транспортного средства, защитив от неблагоприятного воздействия, как это делают в гусеничной технике
Также торсионы любят прикручивать французы в задней подвеске маленьких грузовичков
Кроме того, нельзя не упомянуть наш любимый запорожец 968 и его модификации, с передней торсионной подвеской на балансирах, пошти как у танка!
Ну и самая распространенная схема — схема с продольным расположением торсиона, связанного с нижним горизонтальным рычагом, такую схему часто можно встретить в передней подвеске внедорожников.
Далее продолжим с пневматическими упругими элементами.
Пневморессора, это упругий элемент подвески, представляющий из себя резиновый рукав, заполненный воздухом под давлением, его еще именуют пневмоподушкой, сильфоном и тп, конструкции бывают разными.
Например, самые примитивные пневмоподушки, которые устанавливаются вместо пружин, бывают одно и многосекционными
Также му можем встретить пневмобаллоны рукавного типа, они уже в основном используются в заводских решениях и в том числе на тяжелой технике, такой, как магистральные тягачи и прицепы
Также рукавный тип может быть объединен с амортизатором в единую стойку, что часто встречается в легковых автомобилях
Пневматические упругие элементы имеют много положительных сторон, и самая главная — возможность менять жесткость упругого элемента. Как известно, главная задача упругого элемента — обеспечить достаточную плавность хода, то есть не допускать больших ускорений подрессоренной массы. Для этого, на определенную массу подходит строго определенная жесткость упругого элемента, особенно в свете необходимости сохранения дорожного просвета. Но у упругих элементов с фиксированной жесткостью приходится идти на компромисс, дабы автомобиль с полной загрузкой сохранял дорожный просвет, поэтому на автомобиле с небольшой загрузкой жесткость упругих элементов сильно выше, чем должна быть, и подвеска ощущается как жесткая, однако если автомобиль хорошо нагрузить, то многие замечали, что машина начинает буквально плыть над дорогой, если не лежит на отбойниках, разумеется, едет «будто на пневме», часто можно услышать, а в этом-то и главный плюс пневматики. Пневмоэлементы имеют прогрессивную характеристику, и кривая характеристики зависит от объема пневмоэлемента и от его диаметра, чем больше объем и диаметр, тем более плавной становится характеристика, и наоборот, чем компактнее элемент, тем ее характер прогрессивнее. Так как при одном и том-же рабочем ходе в узком элементе сильнее изменяется давление воздуха.
Все это позволяет «на лету» подгонять жесткость упругих элементов под требуемую, и автомобиль всегда сохраняет максимальную плавность хода, хоть пустой, хоть полностью загруженный, кроме того это свойство оказывается сильно востребовано на автомобилях, чья масса постоянно изменяется, это автобусы и тяжелые грузовые автомобили. Как бонус, вместе с жесткостью, возможно изменять и величину дорожного просвета.
В минусы можно записать только наличие обслуживающей работу подвески пневмосистемы, в которой присутствуют компрессор, пневмомагистрали, ресиверы, блоки клапанов, датчики положения подвески, контроллеры. Отсюда вытекает высокая стоимость таких систем, и в бюджетных автомобилях она не встречается.
Зато встречается другая интересная система, а именно — гидропневматические упругие элементы, коими промышляет контора Ситроен всю историю своего существования. Зовут ее Гидрактив, и у него есть несколько модификаций и поколений, но принцип действия самих упругих элементов у них схож.
Они пошли интересным путем, и вынесли пневматический упругий элемент за пределы подвески и сделали его в виде герметичной стальной сферы с мембраной. Многим знакомы бытовые мембранные баки, используемые в системах отопления и водоснабжения, так вот — это по сути то-же самое. Роль упругого элемента непосредственно воспринимающего нагрузку играет гидроцилиндр, отвод гидравлического масла из которого организуется в сферу, а в сфере масло подпирается воздухом, чем и осуществляется поглощение энергии.
Думаю многие уже догадались о том, какая это крутая штука) А крутость ее заключается в том, что мы можем в неограниченных пределах изменять такой важный параметр, как характеристика упругости, делая кривую какой угодно формы, изменяя сечение канала, соединяющего гидроцилиндр со сферой, также мы можем вообще отключить демпфирующий элемент, превратив его в лом, и это помимо всех остальных достоинств, присущих пневмоподвеске, то есть изменение жесткости и дорожного просвета. И это еще не все, как многие уже заметили, в данных подвесках отсутствуем амортизатор, просто за его ненадобностью, с его обязанностями прекрасно справляется дросселирование рабочей жидкости управляемым клапаном, благодаря чему мы контролируем и характеристики гасящей системы.
Конструкцию и внутренний мир комбинированного элемента подвески ситроен С5 видно на картинке
И на данный момент этот тип подвески лучший, из тех, что можно найти в автомобиле. Об этом в том числе говорит и тот факт, что рекордсменом скорости в «Лосином тесте» до сих пор является ситроен Ксантия с интеллектуальным гидрактивом, который поставил рекорд в 85кмч еще в 1999 году, и который до сих пор не превзошли ни порше, ни феррари, ни теслы, ни кто-либо еще. Предыдущий рекорд держался из 80-х и был поставлен феррари тестаросса, и это было 80кмч, а ксантия является очень комфортным автомобилем, не высыпающим позвоночник в трусы.
Ну и напоследок, последний тип демпфирующего элемента, не использующийся в автомобилях — электромагнитный.
Единственный действующий прототип таких упругих элементов сделала в 90-х компания Bose. Чисто теоретически данная подвеска дает нам вообще полный контроль над всеми параметрами упругого элемента, так как представляет из себя линейный электромотор. Автомобиль с такими упругими элементами может полностью нивелировать крены в поворотах, изменять дорожный просвет, поднять одно колесо и даже перепрыгнуть препятствие, однако дальше прототипа дело не пошло, лично я думаю, что дело оказалось в очень толстых пожеланиях компании на патент своего изобретения. Так как заявленные параметры по надежности и электропотреблению делают такую подвеску не дороже гидрактива, ну или кто-то а ТТХ написал неправду. Видео с тойотой краун, оснащенной электромагнитными стойками Bose широко распространено в интернете, здесь-же лимит на картинки исчерпан. Могу только поделиться ссылкой
В следующей части перейдем к гасящим элементам, и наконец начнем рассматривать различные типы подвесок.
Пишу медленно, но этот цикл допишу до конца. Он наверно будет последним) Пикабу перестал быть познавательным и перешел в категорию ЯПа. Но раз люди подписались, и кому-то нравится, обязан дописать! Спасибо за внимание!
Тестовые задания по теме «Ходовая часть автомобиля»
Тесты к теоретическим занятиям по теме « Ходовая часть автомобиля », входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик» и МДК 01.01 «Устройство автомобилей» специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта» .
Целью настоящих тестов является закрепление студентам знаний, полученных при изучении теоретического материала по теме « Ходовая часть автомобиля », входящей в состав МДК 01.01 «Устройство автомобилей» специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта» .
Тесты составлены в соответствии с требованиями программы профессионального модуля ПМ.01 « Техническое обслуживание и ремонт автомобильного транспорта » специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта» дневной формы обучения.
Организация-разработчик: Морской колледж ФГАОУ ВО «Севастопольский государственный университет».
Разработчик: Минаев Николай Александрович, преподаватель.
1. Какие упругие элементы применяются в независимой подвеске?
а) листовые полуэллиптические рессоры
б) спиральные цилиндрические пружины
в) упругие элементы обоих указанных типов
2. Что означают в маркировке шин легковых автомобилей буквенные индексы L , P , Q , S ?
а) индекс максимальной допустимой скорости
б) индекс максимально грузоподъемности
в) товарный знак завода-изготовителя
3. Какие силы воздействуют на несущий кузов или раму автомобиля при движении?
б) продольные силы
в) вертикальные силы
д) все перечисленные силы
4. Каким должно быть усилие хода отдачи, создаваемое телескопическим амортизатором?
а) равно усилию хода сжатия
б) больше усилия хода сжатия в 2-3 раза
в) меньше усилия хода сжатия в 2-3 раза
г) в зависимости от конструктивных особенностей амортизатора
5. Какие функции выполняют амортизаторы?
а) увеличивают жёсткость упругих элементов подвески
б) гасят колебания автомобиля, возникающие после наезда на препятствие
в) уменьшают жесткость упругих элементов подвески
г) ограничивают вертикальные перемещения колёс и мостов относительно кузова или рамы
6. Каким образом осуществляется соединение колес с балкой моста на автомобилях с зависимой передней подвеской?
а) цапфа колеса крепится к деталям, имеющим возможность перемещаться относительно балки
б) цапфа шарнирно крепится к концевой части балки
в) цапфа может крепиться любым из названных способов в зависимости от марки автомобиля
7. Какие усилия воспринимают и передают цилиндрические пружины подвески?
а) усилия, направленные горизонтально перпендикулярно к оси движения автомобиля
б) усилия, направленные горизонтально вдоль оси движения автомобиля
в) усилия, направленные вертикально
г) усилия, направленные во всех перечисленных направлениях
8. Что такое сайлентблок?
а) устройство, блокирующее вертикальные перемещения кузова
б) элемент, состоящий из резиновой втулки с железным сердечником
в) подушка под амортизатор
9. Какая подвеска наиболее широко применяется на передней оси автомобиля?
б) на двойных поперечных рычагах
г) Н-образная балка
10. Какую функцию выполняют рычаги подвески?
а) удерживают колесо от продольных и поперечных перемещений
б) сглаживают вибрации во время движения
в) придают дополнительную жёсткость кузову
11. Благодаря каким конструктивным особенностям нашли широкое применение шаровые опоры?
а) возможность вращения в любых плоскостях
б) высокая нагрузочная способность
в) не требовательны к обслуживанию
г) всё вышеперечисленное
12. Какими преимуществами обладает пневмоподвеска?
37. Назначение, классификация и устройство подвесок.
Подвеской называется совокупность устройств, осуществляющих упругую связь колес с несущей системой автомобиля (рамой или кузовом).
Подвеска служит для обеспечения плавности хода автомобиля и повышения безопасности его движения.
Плавность хода – свойство автомобиля защищать перевозимых людей и грузы от воздействия неровностей дороги. Смягчая толчки и удары от дорожных неровностей, подвеска обеспечивает возможность движения автомобиля без дискомфорта и быстрой утомляемости людей и повреждения грузов.
Подвеска повышает безопасность движения автомобиля, обеспечивая постоянный контакт колес с дорогой и исключая их отрыв от нее.
Подвеска разделяет все массы автомобиля на две части – подрессоренные и неподрессоренные.
Подрессоренные – части, опирающиеся на подвеску: кузов, рама и закрепленные на них механизмы.
Неподрессоренные – части, опирающиеся на дорогу: мосты, колеса, тормозные механизмы.
При движении по неровной дороге подрессоренные части автомобиля колеблются с низкой частотой, а неподрессоренные – с высокой частотой.
Подвеска автомобиля состоит из четырех основных устройств – направляющего, упругого, гасящего и стабилизирующего.
Направляющее устройство подвески направляет движение колеса и определяет характер его перемещения относительно кузова и дороги. Направляющее устройство передает продольные и поперечные силы и их моменты между колесом и кузовом автомобиля.
Упругое устройство подвески смягчает толчки и удары, передаваемые от колеса на кузов автомобиля при наезде на дорожные неровности. Упругое устройство исключает копирование кузовом неровностей дороги и улучшает плавность хода автомобиля.
Гасящее устройство подвески уменьшает колебания кузова и колес автомобиля, возникающие при движении по неровностям дороги и приводит к их затуханию. Гасящее устройство превращает механическую энергию колебаний в тепловую энергию с последующим ее рассеиванием в окружающую среду.
Стабилизирующее устройство подвески уменьшает боковой крен и поперечные угловые колебания кузова автомобиля.
Подвеска обеспечивает движение автомобиля, и ее работа осуществляется следующим образом. Крутящий момент, передаваемый от двигателя на ведущие колеса, создает между колесом и дорогой тяговую силу, которая приводит к возникновению на ведущем мосту толкающей силых. Толкающая сила через направляющее устройство подвески передается на кузов автомобиля и приводит его в движение. При движении по неровностям дороги колесо перемещается в вертикальной плоскости. Упругое устройство подвески деформируется, а кузов и колеса совершают колебания, гасит которые амортизатор. Корпус амортизатора, заполненный амортизаторной жидкостью, прикреплен к балке моста. В корпусе находится поршень с отверстиями и клапанами, шток которого связан с кузовом автомобиля. В процессе колебаний кузова и колес поршень совершает возвратно-поступательное движение. При ходе сжатия (колесо и кузов сближаются) амортизаторная жидкость из полости под поршнем вытесняется в полость над поршнем, а при ходе отдачи (колесо и кузов расходятся) перетекает в обратном направлении. При этом жидкость проходит через отверстия в поршне, прикрываемые клапанами, испытывает сопротивление, и в результате жидкостного трения обеспечивается гашение колебаний кузова и колес автомобиля. Боковой крен и поперечные угловые колебания кузова автомобиля уменьшает стабилизатор поперечной устойчивости, который представляет собой специальное упругое устройство, устанавливаемое поперек автомобиля. Средней частью стабилизатор связан с кузовом, а концами с рычагами подвески. При боковых кренах и поперечных угловых колебаниях кузова концы стабилизатора перемещаются в разные стороны: один опускается, а другой поднимается. Вследствие этого средняя часть стабилизатора закручивается, препятствуя тем самым крену и поперечным угловым колебаниям кузова автомобиля. В то же время стабилизатор не препятствует вертикальным и продольным угловым колебаниям кузова, при которых он свободно поворачивается в своих опорах.
На автомобилях в зависимости от их класса и назначения применяют различные типы подвесок.
по направляющему устройству
по упругому устройству
по гасящему устройству
по стабилизирующему устройству
По направляющему устройству все подвески разделяются на два основных типа — зависимые и независимые.
Зависимой называется подвеска, при которой колеса одного моста связаны между собой жесткой балкой, вследствие чего перемещение одного из колес вызывает перемещение другого колеса. На легковых автомобилях зависимые подвески применяются обычно для задних колес. Они просты по конструкции и в обслуживании, имеют малую стоимость.
Независимой называется подвеска, при которой колеса одного моста не имеют между собой непосредственной связи, подвешены независимо друг от друга и перемещение одного колеса не вызывает перемещения другого колеса.
По направлению движения колес относительно дороги и кузова автомобиля независимые подвески могут быть с перемещением колес в поперечной, продольной и одновременно в продольной и поперечной плоскостях.
Независимые подвески в легковых автомобилях применяются для передних и задних колес. Эти подвески обеспечивают более высокую плавность хода, чем зависимые подвески, но сложнее по конструкции, при обслуживании и более дорогостоящие. Тип подвески автомобиля также определяет и упругое устройство, которое может быть выполнено в виде листовой рессоры, спиральной пружины, торсиона и пневмобаллона. При этом упругость подвески обеспечивается за счет упругих свойств металла, из которого изготовлены рессоры, пружины и торсионы, и сжатия воздуха.
В зависимости от применяемого упругого устройства подвески называются рессорными, пружинными, торсионными, пневматическими, гидропневматическими и комбинированными.
Рессорные подвески в качестве упругого устройства имеют листовые рессоры. Рессора состоит из собранных вместе отдельных листов выгнутой формы. Стальные листы имеют обычно прямоугольное сечение, одинаковую ширину и различную длину. Кривизна листов неодинакова и зависит от их длины. Она увеличивается с уменьшением длины листов, что необходимо для плотного прилегания их друг к другу в собранной рессоре. Вследствие различной кривизны листов также обеспечивается разгрузка листа рессоры. Взаимное положение листов в собранной рессоре обычно обеспечивается стяжным центровым болтом. Кроме того, листы скреплены хомутами, которые исключают боковой сдвиг одного листа относительно другого и передают нагрузку от листа (разгружают его) на другие листы при обратном прогибе рессоры. Лист, имеющий наибольшую длину, называется коренным. Часто он имеет и наибольшую толщину. С помощью коренного листа концы рессоры крепят к раме или кузову автомобиля. От способа крепления рессоры зависит форма концов коренного листа, которые в легковых автомобилях делаются загнутыми в виде ушков.
При сборке рессоры ее листы смазывают графитовой смазкой, которая предохраняет их от коррозии и уменьшает трение между ними. В рессорах легковых автомобилей для уменьшения трения между листами по всей длине или на концах листов часто устанавливают специальные прокладки из неметаллических антифрикционных материалов (пластмассы, фанеры, фибры и т.п.). Основным преимуществом листовых рессор является их способность выполнять одновременно функции упругого, направляющего, гасящего и стабилизирующего устройств подвески.
Листовые рессоры способствуют гашению колебаний кузова и колес автомобиля. Кроме того, они просты в изготовлении и легко доступны для ремонта в эксплуатации. По сравнению с упругими устройствами других типов листовые рессоры имеют увеличенную массу, менее долговечны, обладают сухим трением, ухудшают плавность хода автомобиля и требуют ухода (смазывания) в процессе эксплуатации. Листовые рессоры получили наибольшее применение в зависимых подвесках. Обычно их располагают вдоль автомобиля. Концы рессоры шарнирно соединяют с рамой или кузовом автомобиля. Передний конец закрепляют с помощью пальца, а задний – чаще всего подвижной серьгой. При таком соединении концов рессоры ее длина может изменяться во время движения автомобиля. Для крепления концов рессоры применяют шарниры различных типов.
Пружинные подвески в качестве упругого устройства имеют спиральные (витые) цилиндрические пружины. Пружины изготавливают из стального прутка круглого сечения. В подвеске витые пружины воспринимают только вертикальные нагрузки и не могут передавать продольные и поперечные усилия и их моменты от колес на раму и кузов автомобиля. Поэтому при их установке требуется применять направляющие устройства. При использовании витых пружин также необходимы гасящие устройства, так как в пружинах отсутствует трение. По сравнению с листовыми рессорами спиральные пружины имеют меньшую массу, более долговечны, просты в изготовлении и не требуют технического обслуживания. Спиральные пружины в качестве основного упругого элемента применяются главным образом в независимых подвесках и значительно реже в зависимых. Их обычно устанавливают вертикально на нижние рычаги подвески.
Торсионные подвески в качестве упругого устройства имеют торсионы. Торсион представляет собой стальной упругий стержень, работающий на скручивание. Он может быть сплошным круглого сечения, а также составным – из круглых стержней или прямоугольных пластин. На концах торсиона имеются головки (утолщения) с нарезанными шлицами или выполненные в форме многогранника (шестигранные и т.д.). С помощью головок торсион одним концом крепится к раме или кузову автомобиля, а другим к рычагам подвески. Упругость связи колеса с рамой обеспечивается вследствие скручивания торсиона. Торсионы, как и пружины, требуют применения направляющих и гасящих устройств. По сравнению с листовыми рессорами торсионы обладают теми же преимуществами, что и спиральные пружины. Однако по сравнению со спиральными пружинами торсионы менее долговечны. Торсионы наиболее распространены в независимых подвесках. На автомобиле торсионы могут быть расположены как продольно, так и поперечно.
Пневматические подвески в качестве упругого устройства имеют пневматические баллоны различной формы. Упругие свойства в таких подвесках обеспечиваются за счет сжатия воздуха. Наибольшее применение в пневматических подвесках получили двойные (двухсекционные) круглые баллоны. Двойной круглый баллон состоит из эластичной оболочки, опоясывающего или разделительного кольца и прижимных колец с болтами. Оболочка баллона резинокордовая, обычно двухслойная. Корд оболочки капроновый или нейлоновый. Внутренняя поверхность оболочки покрыта воздухонепроницаемым слоем резины, а наружная – маслобензостойкой резиной. Для упрочнения бортов оболочки внутри их заделана металлическая проволока, как у покрышки пневматической шины. Опоясывающее кольцо служит для разделения секций баллона и позволяет уменьшить его диаметр. Прижимные кольца с болтами предназначены для крепления баллона. Двойные круглые баллоны применяют в подвесках автобусов, грузовых автомобилей, прицепов и полуприцепов. Обычно баллоны располагают вертикально в количестве от двух (передние подвески) до четырех (задние подвески).
Резиновые упругие элементы широко применяют в подвесках современных автомобилей в виде дополнительных упругих устройств, которые называются ограничителями или буферами. Часто внутрь буферов вулканизируют металлическую арматуру, которая повышает их долговечность и служит для крепления буферов. Буфера подразделяются на буфера сжатия и отдачи. Первые ограничивают ход колес вверх, вторые – вниз. При этом буфера сжатия ограничивают деформацию упругого устройства подвески и увеличивают его жесткость. Буфера сжатия и отдачи совместно применяют обычно в независимых подвесках. В зависимых подвесках используют главным образом буфера сжатия.