Аппаратура глиссадных, курсовых и маркерных радиомаяков имеет
100% резерв. Не резервируют только антенно-фидерные системы и элементы дистанционного управления.
Включение, выключение радиомаяка и выбор рабочего комплекта аппаратуры осуществляют дистанционно с командно-диспетчерского пункта аэродрома. Курсовой радиомаяк может работать на одном из шести фиксированных частотных каналов, глиссадный – на одном из трех каналов.
Если на аэродроме оборудовано несколько направлений посадки, то на каждом направлении устанавливается указанный комплект оборудования посадочной полосы. В нашей стране применяются системы посадки СП-50М, СП-68, СП-70, СП-75. Система СП-50М принадлежит к I катего- рии, СП-68 – ко второй, СП-75 – либо к I, либо к II, а система СП-70 по своим потенциальным возможностям – к III категории.
Маркерный канал
Маркерный канал работает на частоте 75 МГц. Антенна маркерного радиомаяка имеет диаграмму в виде направленной вверх воронки и излу- чает высокочастотные колебания, которые модулируются напряжением с частотой 400, 1300 или 3000 Гц и манипулируются последовательностью точек или тире, либо комбинацией точка-тире.
Частота модуляции и код манипуляции выбираются в зависимости от места установки маркерного радиомаяка (дальний, средний, ближний).
Маркерный радиоприемник МРП-3П предназначен для совместной работы с маркерными радиомаяками систем СП-50М и ILS, имеет три канала. Выходные цепи приемника обеспечивают получение световой и звуковой сигнализации и селекцию модулирующих частот маркерного радиомаяка
Канал курса
Канал курса работает на частоте около 110 МГц. Курсовой радиомаяк относят к категории радиомаяков с «опорным напряжением», принцип действия которых основан на методе минимума глубины амплитудной модуляции. Антенная система маяка одновременно формирует в пространстве две диаграммы направленности. Одна диаграмма создается на несущей частоте, промодулированной по амплитуде колеба- ниями поднесущей частоты 10 кГц. Поднесущая, в свою очередь, имеет частотную модуляцию низкочастотным напряжением частоты 60 Гц (сигнал постоянной фазы).
Другая диаграмма создается на боковых частотах спектра высокочастотного колебания, балансно-модулированного напряжением с частотой 60 Гц, и имеет в горизонтальной плоскости два главных лепестка с нулевым излучением вдоль линии курса и сдвигом фазы поля в одном лепестке на 180O относительно фазы в другом [fб(), рис. 2.3].
Рис. 2.3. Диаграммы направленности антенн курсового радиомаяка с «опорным напряжением» (в горизонтальной плоскости)
Сравнение амплитуд и фаз сигналов постоянной фазы и переменной фазы на частоте 60 Гц обеспечивает указание стороны и значения отклонения от линии курса на борту самолета.
В результате детектирования амплитудно-модулированных колебаний в приемном устройстве выделяется сигнал переменной фазы, представляющий собой колебания с частотой 60 Гц, амплитуда и фаза которых зависит от значения и направления указанного углового отклонения.
Сигнал переменной фазы после усиления подают на фазовый детектор, нагруженный на стрелочный индикатор положения линии курса относительно точки приема. Опорным сигналом при фазовом детектировании служит сигнал постоянной фазы.
Рис. 2.4. Диаграммы напряжений сигналов в канале курса: 1 – сигналы, излучаемые боковыми лепестками диаграммы направленности; 2 – сигнал, излучаемый центральным лепестком; 3 – суммарный сигнал на входе самолетного приемника при различных направлениях захода на посадку; 4 – продетектированный сигнал на выходе самолетного приемника (сигнал переменной фазы); 5 – опорный сигнал (сигнал постоянной фазы); 6 – выходное напряжение фазового детектора самолетного приемника; 7 – показания индикатора положения
Курсовой радиомаяк КРМ-2М имеет следующие основные параметры:
– зона действия в горизонтальной плоскости 15;
– максимальная дальность действия в секторе 8 – 45 км;
– модуляция несущей – поднесущая частота 100,1 кГц, глубина амплитудной модуляции поднесущей 305\%, девиация поднесущей 1100100 Гц, частота балансной модуляции 602 Гц;
– максимально допустимый сдвиг между сигналами постоянной и переменной фазы в границах сектора курса 10 град.
Что такое КГС в фильме «Призрак», почему нельзя посадить самолёт, если выключена?
Юрий Гордеев, один из основателей авиаконструкторской компании садится за руль пьяным и врезается на дороге в опору моста. После такой аварии выжить не удалось и Юру отвозят в морг, но через 9 дней должен быть триумф всей его конструкторской жизни, ведь он вместе со своим приятелем Геной создали один из лучших самолётов в мире и должны были представить его на авиашоу в Жуковском. Разве можно умереть в такой день! и вот призрак Юрия бродит по городу, ища невинную душу с которой он должен осуществить мечту всей своей жизни. Этим невинным юнцом оказывается «тюлень» Ваня Кузнецов из 8 «А». Теперь нужно поставить Ваню на путь истинный и использовать его в своих интересах, чтобы завершить жизненный путь.
Год выпуска : 2015
Жанр : Фантастика, Комедия, Мистика
Страна : Россия
Сценаристы : Олег Маловичко, Андрей Золотарев, творческая группа «Сахар, 1kg»
Режисер : Александр Войтинский
Актёры : Фёдор Бондарчук, Ян Цапник, Семен Трескунов, Анна Антонова, Софья Райзман, Ани Петросян, Игорь Угольников, Ксения Лаврова-Глинка, Руслан Садковский, Алексей Лукин,
Кинокомпания : Кинокомпания СТВ, «Молния Пикчерз»
Прокат : «Наше кино»
В фильме «Призрак» что такое КГС, почему нельзя посадить самолёт, если выключена?
Система КГС, без которой даже такой профессиональный пилот, как Юрий Гордеев не решился посадить самолёт на посадочную полосу, не что иное, как посадка самолёта по приборам при помощи Курсо-Глиссадной системы, что и образует абревеатуру из первых букв слов — КГС.
Принцип работы КГС заключается в заимодействии двух радиомаяков, одного горизонтальной направленности — курсового (КРМ), а второго вертикальной направленности — глиссадного (ГРМ).
Каждый маяк при помощи диапазона частот создаёт вертикальную и соответственно горизонтальную сетку нахождения посадочной полосы, частоты этих маяков улавливают приборы самолёта и пилот совмещает их в нулевом секторе летя по которому самолёт плавно опускается на посадочную полосу и пилоту даже нет необходимости наблюдать что происходит за бортом самолёта сквозь стекло.
Система КГС довольно хорошо справляется со своей работой при посадке самолётов и даже при переходе на более современные системы, КГС всё-равно будут оставлять на посадочных полосах, как резервную систему, так как долгие годы она исправно служит во многих аэропортах мира.
Заход на посадку по курсо-глиссадной системе
Автор: Дмитрий Просько Дата: 06.02.2005 23:20
Курсо-глиссадная система (в дальнейшем будем называть ее КГС, как это принято в России) является наиболее распространенной системой захода на посадку на крупных и оживленных аэродромах. Кроме того, она является наиболее точной, если конечно не считать MLS — Microwave Landing System, которая до сих пор не получила такого же широкого распространения. Сейчас мы попытаемся разобраться, как работает эта система и как научить ею пользоваться. Конечно, эта статья не претендует на наиболее полное и единственно верное руководство :), но в качестве учебного пособия на начальном этапе она вам очень поможет.
Состав и принцип работы КГС
Все, что мы видим на приборах при посадке — это 2 перекрещивающихся планки, обозначающие положение самолета относительно траектории захода на посадку. Давайте попытаемся понять, за счет чего они перемещаются, и почему пилотажно-навигационный комплекс самолета получает очень точную информацию о положении самолета.
Итак, из чего состоит КГС:
- Курсовой маяк, который обеспечивает наведение самолета в горизонтально плоскости — по курсу. маяк, обеспечивающий наведение в вертикальной плоскости — по глиссаде.
- Маркеры, сигнализирующие момент пролета определенных точек на траектории захода. Обычно маркеры устанавливаются на ДПРМ и БПРМ.
- Приемные устройства на борту самолета, обеспечивающие прием и обработку сигнала.
Курсовой и глиссадный маяки устанавливаются возле ВПП. Курсовой маяк — в противоположном торце ВПП по осевой линии, глиссадный маяк сбоку от ВПП на удалении точки приземления от порога ВПП.
Теперь о том, как работают эти маяки. Возьмем за основу курсовой маяк и несколько упрощенно рассмотрим его работу. При работе маяк формирует 2 разночастотных сигнала, которые схематично можно показать как 2 лепестка, направленные вдоль траектории захода на посадку.
В случае, если самолет находится точно на пересечении этих двух лепестков, мощность обоих сигналов одинакова, соответственно разность их мощностей равна нулю, и индикаторы прибора выдают 0. Мы на курсе. Если самолет отклонился влево или вправо, то один сигнал начинает преобладать над другим. И чем дальше от линии курса, тем больше это преобладание. В результате этого за счет разницы в мощности сигнала приемник самолета точно устанавливает, насколько далеко мы от линии курса.
Глиссадный маяк работает точно по такому же принципу, только в вертикальной плоскости.
Читаем показания приборов
Итак, мы вошли в зону действия КГС. Планки на ПНП отшкалили, значит пора нам сориентироваться, где мы находимся и как нам надо пилотировать самолет, чтобы точно вписаться в траекторию захода.
В зависимости от того, какой прибор у нас установлен, индикация может меняться, но основной принцип остается неизменным — планки (стрелки, индексы) показывают нам положение траектории захода относительно нашего места. На том приборе, что мы сейчас рассмотрим, наше положение относительно курса показывает вертикальная планка, а положение относительно глиссады — треугольный индекс в правой части прибора.
Сами планки как бы показывают нам, где именно находится наша траектория. Если курсовая планка слева, то линия курса тоже находится слева, а значит, нам надо довернуть влево. То же и по глиссаде — если глиссадный индекс внизу, то мы идем выше, и нам надо увеличить вертикальную скорость, чтобы «догнать» глиссаду.
Теперь давайте пройдемся по разным положениям самолета и посмотрим на индикацию прибора в положениях, указанных на общем рисунке.
1. Мы на линии курса и еще не подошли к точке входа в глиссаду. Все как положено — курсовая планка точно в центре, глиссадный индекс вверху. Линия глиссады проходит над нами и устремляется в никуда под углом в среднем 2 градуса 40 минут относительно горизонта. Кстати, угол наклона глиссады (УНГ) на разных аэродромах разный. Это зависит от рельефа местности и от других условий. К примеру, на горных аэродромах УНГ может составлять до 4-5 градусов.
2. Мы находимся в точке входа в глиссаду (ТВГ). Это точка, образованная пересечением глиссады с высотой круга. Средняя величина удаления ТВГ составляет примерно 12 км. Естественно, чем выше высота круга и чем меньше УНГ, тем дальше от порога ВПП находится ТВГ.
3. Мы находимся левее и выше. Надо довернуть вправо и увеличить скорость снижения.
4. Мы находимся левее и ниже. Приберем вертикальную и довернем вправо.
5. Мы находимся правее и выше. Довернем влево и увеличим вертикальную.
6. Мы правее и ниже. Догадайтесь, что нужно сделать :)
Ну в общем-то это все, что хотелось вам сообщить :)
Напоследок хочу сделать одно весьма важное дополнение.
Учтите, что чем ближе мы находимся к ВПП, тем меньше должны быть эволюции самолета, потому что прибор становится очень чувствительным. К примеру, если мы находимся на удалении 10 км от порога ВПП, положение курсовой планки на второй точке шкалы может означать боковое отклонение в 400 метров или более (это к примеру). Чтобы довернуть, нам понадобится изменить курс на 4-5 градусов или более. Если же мы находимся на удалении 2 км, то такое положение планки означает, что отклонения превысили предельно допустимые, и единственное, что нам остается, это уходить на второй круг. Чем ближе самолет к порогу ВПП, тем ближе к центру должна быть курсовая планка. В идеале конечно точно в центре :) И соответственно, чем мы ближе, тем меньше должны быть эволюции самолета. Нет смысла закладывать 30-градусный крен в районе ближнего привода. Во-первых, это опасно на такой высоте, во-вторых вы просто не успеете довернуть, учитывая инерцию самолета.
То же самое касается и глиссады. Если мы находимся ниже глиссады, то на большом удалении нам иногда приходится уменьшать вертикальную до нуля, а на маленьком удалении это было бы неверно опять же из-за опасности перелета и, соответственно, выкатывания за ВПП.
Поэтому обязательно учитывайте удаление от порога ВПП, прежде чем начинать маневрирование. В общем-то поэтому ТВГ и сделали на таком большом удалении, чтобы вы успели поправить все ошибки и точно выполнить заход :)
Курсо-глиссадная система
Ку́рсо-глисса́дная система, КГС. В России, согласно действующему на 2010 год ГОСТу именуется — Система инструментального захода самолётов на посадку радиомаячная [1] . — Наиболее распространённая в авиации радионавигационная система захода на посадку по приборам. В зависимости от длины волны делятся на системы метрового (англ. ILS (Instrument Landing System) ) и сантиметрового диапазонов (англ. MLS, Microwave landing system — Микроволновая система посадки).
Содержание
История
Системы посадки по приборам, основанные на радионавигационных принципах работы, в наиболее развитых странах начали разрабатывать в начале 1930-х годов. В США после успешных испытаний курсо-глиссадной системы Администрация Гражданской Авиации заключила договор на её установку к 1941 году в 6 аэропортах страны. В 1945 году США использовали КГС на 9 гражданских аэродромах и 50 военных [2] . Созданная немцами в 1930-е годы КГС к 1938 году, помимо самой Германии, продавалась по всему миру и была установлена, в частности, в Дании, Швеции, Польше, Чехословакии, Венгрии, Австралии и Англии [3] . Япония до войны разработала оптическую систему посадки для использования на авианосцах. Во Вторую мировую войну подобной системой на авианосцах обладали только японцы. В СССР первой серийной КГС была СП-50 (система посадки) 1950 года [4] .
Принцип работы
Антенная система КРМ представляет собой многоэлементную антенную решётку, состоящую из линейного ряда направленных антенн метрового диапазона частот с горизонтальной поляризацией. Для расширения рабочего сектора радиомаяка до углов ±35° часто используется дополнительная антенная решётка. Диапазон рабочих частот КРМ 108—112 МГц (используется 40-канальная сетка частот, где каждой частоте КРМ поставлена в соответствие определённая частота ГРМ). КРМ размещают за пределами взлётно-посадочной полосы на продолжении её осевой линии. Его антенная система формирует в пространстве одновременно две горизонтальных диаграммы излучения. Первая диаграмма имеет один широкий лепесток, направленный вдоль осевой линии, в котором несущая частота промодулирована по амплитуде суммой сигналов с частотой 90 и 150 Гц. Вторая диаграмма имеет два узких противофазных лепестка по левую и правую сторону от осевой линии, в которых радиочастота промодулирована по амплитуде разностью сигналов с частотой 90 и 150 Гц, а несущая подавлена. В результате сложения сигнал распределяется в пространстве таким образом, что при полёте вдоль осевой линии глубина модуляции сигналов 90 и 150 Гц одинакова, а значит разность глубин модуляции (РГМ) равна нулю. При отклонении от осевой линии глубина модуляции сигнала одной частоты растёт, а другой — падает, следовательно, РГМ увеличивается в положительную или отрицательную сторону. При этом сумма глубин модуляции (СГМ) в зоне действия маяка поддерживается на постоянном уровне. Бортовое пилотажно-навигационное оборудование измеряет величину РГМ, определяя сторону и угол отклонения воздушного судна от посадочного курса.
Антенная система ГРМ представляет собой в простейшем случае решётку из двух разнесенных по высоте направленных антенн дециметрового диапазона с горизонтальной поляризацией (решётка «0»). Диапазон рабочих частот ГРМ 329—335 МГц. ГРМ размещают со стороны, противоположной участку застройки и рулёжным дорожкам, на расстоянии 120—180 м от оси ВПП напротив зоны приземления. Удаление ГРМ от порога ВПП определяется таким образом, чтобы при заданном угле наклона глиссады опорная точка (точка над торцом ВПП, через которую проходит прямолинейная часть глиссады) находилась на высоте 15±3 м для радиомаячных систем посадки I и II категории и 15+3−0 м для систем III категории. Диаграмма направленности антенной системы ГРМ формируется в результате отражения радиоволн от поверхности земли, поэтому к чистоте зоны, непосредственно прилегающей к антенной системе ГРМ, предъявляются особые требования. Чтобы уменьшить влияние неровностей подстилающей поверхности на диаграмму направленности, а, следовательно, и искривления линии глиссады, используется антенная решётка из трёх вертикально разнесенных антенн (решётка «M»). Она обеспечивает пониженную мощность излучения под малыми углами к горизонту. ГРМ использует тот же принцип работы, что и КРМ. Его антенная система формирует в пространстве одновременно две вертикальных диаграммы излучения, с одним широким лепестком и с двумя узкими — выше и ниже плоскости глиссады (плоскости нулевого значения РГМ). Пересечение плоскости курса и плоскости глиссады даёт линию глиссады. Линию глиссады можно назвать прямой только условно, так как в идеальном случае она представляет собой гиперболу, которая в дальней зоне приближается к прямой, проходящей через точку приземления. В реальных условиях из-за неровностей рельефа местности и препятствий в зоне действия радиомаяков линия глиссады подвержена искривлениям, величина которых нормируется для каждой категории системы посадки.
Угол наклона глиссады (УНГ) примерно равен 3°, но может зависеть от местности. Чем меньше УНГ, тем удобнее садиться самолёту, так как ниже вертикальная скорость. В России в аэропортах, где местность не мешает низкому заходу, используется УНГ 2°40′. В горах или если глиссада проходит над городом, УНГ больше. Например, в аэропорту Новосибирск Северный, который находится близко к центру города, глиссада, проходящая над лесом, наклонена под углом 2°40′ (уклон 4,7 %), а заход со стороны города производится под углом 3°40′ (наклон 6,4 %, в 1,5 раза больше). В аэропорту города Кызыла, в горной местности, УНГ равен 4° (7 %).