Как найти силу тяги
Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.
Действие силы тяги
Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.
Её прекращение
Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
1 закон Ньютона о действии
Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.
В современной физике в формулировку внесены уточнения:
- закон применим только в системах отсчета, называемых инерциальными;
- тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».
Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.
Состояние ускорения после воздействия силы тяги
Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.
Формулы для определения силы тяги
Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе \(m\) , умноженной на ускорение \(a\) . Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы \( F_т-\;F_<с>=m\;\times\;a\) , где \(F_т\) — сила тяги, \(F_<с>\) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:
- сила тяжести mg;
- сила реакции опоры \(N\) ;
- сила трения \( F_<тр>\) ;
- сила тяги \(F\) .
При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: \(F_т-\;F_с-\;mg\;\times\;\sin\alpha=m\;\times\;a.\)
Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением \(A\;=\;F\;\times\;s\) . \(s\) здесь — расстояние, на которое тело переместилось.
Какое условие должно соблюдаться
Сила тяги всегда должна быть больше противодействующих ей сил.
Формула через мощность
Полезную механическую мощность \(N\) можно вычислить по формуле \(N=F_т\;\times\;v\) , где \(v\) — скорость. Для определения силы тяги нужно разделить мощность на скорость: \(F_т\;=\;\frac N v.\)
Измерение и обозначение силы тяги
Силу тяги обозначают \(F_т\) или \(F\) . Единица измерения — ньютон ( \(Н\) ).
Для решения задач недостаточно измерить усилие, приложенное к объекту, и выразить его конкретным числом, так как сила обладает еще и направлением. Чтобы подчеркнуть, что сила — векторная величина, к буквенному обозначению добавляют стрелку.
Как определить силу тяги двигателя. Примеры решения задач
Задача 1
Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.
Решение
Переведем киловатты в ватты, а километры в час — в метры в секунду:
\(F_т\;=\;\frac N v = \frac<96000> <60>= 1600 Н\)
Задача 2
Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.
Решение
Переведем тонны в килограммы, а килоньютоны в ньютоны:
\(F_т-\;F_<тр>=m\;\times\;a\) , следовательно, \(F_т=m\times a\;+\;F_<тр>\)
Чтобы определить ускорение а, воспользуемся формулой \(s\;=\;\frac
Подставив численные значения величин, получаем:
Задача 3
Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. \(\mu\) — 0,1 от силы тяжести, \(а = 0\) . Определите силу тяги.
Сила тяги
Силой тяги называют силу, прикладываемую к телу для поддержании его в постоянном движении.
Прекращение действия силы тяги приводит к остановке вследствие трения, вязкости окружающей среды и других противодействующих движению сил.
Тело, на которое не действуют силы, движется с постоянной скоростью $v = const$ (первый закон Ньютона). Частным случаем такого движения является состояние покоя ($v = 0$). Движение с постоянной скоростью называют состоянием инерции. Чтобы вывести тело из такого состояния, нужно приложить к нему силу. Скорость тела в этом случае изменится, т.е. оно получит ускорение (либо замедление, которое можно считать отрицательным ускорением).
Величина ускорения обратнопропорциональна массе тела (чем оно массивнее, тем труднее его вывести из состояния инерции) и прямопропорциональна интенсивности приложенной силы. Таким образом:
- $F$ — сила,
- $m$ — масса,
- $a$ — ускорение.
Эта формула отражает Второй закон Ньютона.
Формулы для расчета
В качестве примера силы тяги, выводящей тело из состояния покоя, можно рассмотреть спортсмена, поднимающего штангу. В исходном состоянии штанга находится в состоянии инерции (остается неподвижной). Когда спортсмен отрывает ее от земли, его мышцы должны сокращаться с такой силой, чтобы она превысила вес штанги, т.е. силу, с которой ее притягивает гравитационное поле Земли. Если штангисту удастся оторвать штангу от пола — значит она переместится вверх на некоторое расстояние, т.е. получит ускорение. Т.е. силой тяги, двигающей данный снаряд, является сила сокращающихся мышц спортсмена. При этом должно соблюдаться условие:
$F_м$ > $F_т$, т.е. $F_м$ >$ m \cdot g$,
где $F_м$ — сила мышц (в данном случае сила тяги), $F_т$ — сила тяжести (гравитация), $m$ — масса, $g$ — ускорение свободного падения.
Состояние движения по инерции следует отличать от равномерного движения, когда сила тяги уравновешивается противодействующими силами. Например, при движении автомобиля работающий двигатель через систему трансмиссии передает на колеса силу, преодолевающую силы трения внутри механизмов автомобиля, трения колес о поверхность дороги, сопротивления воздуха и т.д. Силу тяги можно в этом случае вычислить зная время разгона $t$ до нужной скорости $v$ и массу автомобиля $m$:
Здесь ускорение выражено как частное от деления скорости на время разгона.
Силу тяги можно также выразить через мощность — способность некоторого источника энергии совершать работу. Чем мощность выше — тем за меньшее время этот источник разовьет силу, способную разогнать тело массой $m$ до требуемой скорости $v$. Работа же прямопропорциональна силе, которая ее совершила:
где $s$ — расстояние, на которое сила переместила данное тело.
Поскольку расстояние можно выразить через скорость и время,
а мощность есть работа, выполняемая в единицу времени
можно составить уравнения:
Вычислить силу тяги автомобиля, движущегося с ускорением $3 м/с^2$, если его масса составляет 1,5 тонны, а сила трения — 10% от силы тяжести.
Рассмотрим силу тяги как сумму двух сил:
- разгоняющей автомобиль с заданным ускорением: $F_1 = m \cdot a$, где $m$ — масса, $a$ — ускорение;
- преодолевающей силу трения: $F_2 = \mu \cdot m \cdot g$, где $\mu$ — коэффициент силы трения, $g$ — ускорение свободного падения.
Подставив числовые значения в формулу
$F = F_1 + F_2 = m \cdot a + \mu \cdot m \cdot g$
получим, попутно переведя тонны в единицы СИ килограммы,
$F = 1500 \cdot 3 + 0,1 \cdot 9,8 \cdot 1500 = 1500 \cdot (3 + 0,98) = 5970$
Формула силы тяги
Сила тяги при рассмотрении транспортных средств называется внешней силой, которая должна быть реализована с использованием машины или механизма для перемещения груза.
Сама по себе концепция «тяговой силы» имеет смысл только по отношению к любому транспортному средству, например, говорить о тяговой силе автомобиля, самолета, лошади, тянуть сани.
Единицей измерения силы является Н (Ньютон).
Очень заманчиво заключить, что источником тяги автомобиля является его двигатель. Однако это неверно. Внутренние силы одной части системы (двигателя), действующие на другую часть системы (колеса), не могут ускорить всю систему (весь автомобиль), так как это противоречит закону сохранения импульса. Источником тяги являются внешние воздействия. В случае с автомобилем это сила трения колес на поверхности дороги, в случае корабля — сила струи воды, выброшенной пропеллером.
Нет единой универсальной формулы для расчета силы тяги. Сила тяги определяется конструкцией транспортного средства и физическими условиями проблемы.
Примеры решения проблем по теме «Тяга»
Автомобиль весом 4 тонны движется по ровной дороге с ускорением . Найдите силу тяги двигателя автомобиля, если коэффициент трения .
Мы делаем картину:
При движении по машине сила тяжести , сила реакции опоры , сила трения и тяговое усилие действуют. Под действием этих сил автомобиль движется с ускорением .
Согласно второму закону Ньютона:
Введем систему координат, как показано на рисунке, и запишем это векторное равенство в проекциях на оси координат.
Сила трения . Из второго уравнения . Поэтому мы можем написать ( . Замените значение силы трения в первом уравнении и определите силу тяги автомобильного двигателя:
Ускорение силы тяжести
Подставляя в формулу численные значения физических величин, вычисляем:
Двигатель двигателя тяги
Автомобиль весом 4 тонны движется в гору с наклоном 1 м на каждые 25 м пути с постоянной скоростью. Найдите силу тяги двигателя автомобиля, если коэффициент трения
Мы делаем картину:
В этом примере, как и в предыдущем, при движении автомобиля сила тяжести , сила реакции поддержки , сила трения и тяговое усилие действуют на автомобиль. И под влиянием этих сил автомобиль движется в гору с постоянной скоростью, то есть ускорение автомобиля .
Согласно второму закону Ньютона:
Запишем это векторное равенство в проекциях на оси координат:
Из второго уравнения и силы трения .
Подставляя значение силы трения в первое уравнение, мы определяем силу тяги:
Формула силы тяги
Само по себе понятие «сила тяги» имеет смысл только применительно к какому-нибудь транспортному средству, к примеру, говорят о силе тяги автомобиля, самолета, лошади, тянущей сани.
Единица измерения силы – Н (ньютон).
Очень заманчиво заключить, что источником силы тяги автомобиля является его двигатель. Однако, это неверно. Внутренние силы одной части системы (двигателя), воздействуя на другую часть системы (колеса), не могут придать ускорение всей системе в целом (всему автомобилю), так как это противоречит закону сохранения импульса. Источником силы тяги являются внешние воздействия. В случае автомобиля – это сила трения колес о дорожное покрытие, в случае корабля – сила водной струи, отбрасываемой винтом.
Одной универсальной формулы для расчета силы тяги нет. Сила тяги определяется конструкцией транспортного средства и физическими условиями задачи.
Примеры решения задач по теме «Сила тяги»
Задание | Автомобиль массой 4 т движется по ровной дороге с ускорением 4 м/с . Найти силу тяги двигателя автомобиля, если коэффициент трения . |
Решение | Сделаем рисунок: |
При движении на автомобиль действуют сила тяжести , сила реакции опоры , сила трения и сила тяги . Под действием этих сил автомобиль движется с ускорением .
По второму закону Ньютона:
Введем систему координат, как показано на рисунке, и запишем это векторное равенство в проекциях на координатные оси.
Сила трения . Из второго уравнения . Поэтому можно записать . Подставим значение силы трения в первое уравнение и определим силу тяги автомобильного двигателя:
Ускорение свободного падения м/с
Подставив в формулу численные значения физических величин, вычислим:
Задание | Автомобиль массой 4 т движется в гору с уклоном 1 м на каждые 25 м пути с постоянной скоростью. Найти силу тяги двигателя автомобиля, если коэффициент трения . |
Решение | Сделаем рисунок: |
В данном примере, как и в предыдущем, при движении на автомобиль действуют сила тяжести , сила реакции опоры , сила трения и сила тяги . И под действием этих сил автомобиль движется в гору с постоянной скоростью, т.е. ускорение автомобиля .
По второму закону Ньютона:
Запишем это векторное равенство в проекциях на координатные оси:
Из второго уравнения , и сила трения .