Что такое поршневая группа: общая теория и поршни СТК
Поршневая группа СТК
Поршневая группа двигателя включает в себя: поршень, поршневые кольца и поршневой палец.
Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.
Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуются.
Требования, которым должна соответствовать эта деталь:
температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С.
после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя.
зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.
изготовление должно быть достаточно дешевым и отвечать условиям массового производства.
Очертания поршня за более сто пятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.
Устройство поршня на примере СТК 21126
В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение.
Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой. Маркировка наносится на поверхность рядом с отверстием под поршневой палец. На поршне ВАЗ 21213 нанесены цифры -"213", на модели ВАЗ 2123 — "23".
На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка — "08", "083", "10". Поршень 2108 имеет диаметр 76 мм, модели 21083 и 2110 — 82 мм.
Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку — "12"и "24" и отличаются глубиной выборки под клапана. Модели 21126 и 11194 отличаются диаметром.
Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.
«Жаровым поясом» (огневым) называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.
Уплотняющий участок — это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.
В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию — через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру.
Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведёт к его прогоранию.
По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок.
Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070 мм. Для второго компрессионного кольца зазор — 0,035-0,060 мм, для маслосъемного – 0,025-0,050 мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор — 0,2-0,3 мм.
Головку поршня образуют днище и уплотняющая часть.
Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.
«Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности.
Юбка обеспечивает соосность положения детали к оси цилиндра блока. Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий.
На поверхность юбки (или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.
Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена.
Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015 мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.
Одним из факторов, определяющих геометрию поршня, является необходимость снижения сил трения.
Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.
Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.
В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ.
На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова.
В разработке последующих конструкций принимают участие немецкие компании. У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции, основанных на новых научных разработках.
Когда речь заходит об отечественных машинах (ВАЗ, Приора и пр.) приходиться всерьёз рассматривать компанию СТК и её продукцию. Самара Трейдинг Компани (сокращённо – «СТК») не случайно стала одним из самых популярных производителей поршневых групп. Всё дело исключительно в производстве, ведь оно уникально в своём роде.
Самым сложным и, в то же время, важным технологическим процессом при изготовлении поршневых систем является литьё. Однородность и прочность материалов, жаростойкость и твёрдость – всё это играет важнейшую роль. Стоит какому-то коэффициенту отклонится на 1% и поршень застрянет в цилиндре, шатун может легко искривиться и даже заклинить, нарушив целостность и исправность всего силового агрегата.
Полуавтоматические устройства и специальные высокотехнологические станки позволяют компании СТК осуществлять литьё поршней на высочайшем уровне. Данной технологии нет равных, на протяжении долгих десятилетий и благодаря кропотливой работе инженеров фабрика создаёт самые качественные поршневые кольца и поршни. Несмотря на автоматизацию всех процессов, процедура изготовления каждого поршня контролируется людьми. Каждый продукт проходит целую линейку тестов.
Стоит лишь посетить любую станцию техобслуживания и задать вопрос автомеханику «Какой поршень идеально подойдёт отечественному автомобилю?», и вы услышите ответ: «СТК». Всё дело в том, что каждый механик желает выполнить работу так, чтобы клиент не возвращался к нему и не приходилось нарушать гарантийные обязательства.
Несмотря на лидирование компании СТК существуют и другие неплохие аналоги, например, Кострома-мотордеталь. В сравнении с китайскими и европейскими поршнями, Кострома хорошо показала себя в отечественных машинах, однако сама конструкция этого поршня не способна уберечь водителя от самой зловещей неисправности – столкновения поршня и клапанов.
Безвытковые Поршни СТК, содержащие специальные проточки, не влияют пагубно на клапана головки блока цилиндров. Поэтому в случае гидравлического удара, даже при срыве цепи газораспределительного механизма, когда поршни «летят» вверх, а клапана – вниз, исход их столкновения невозможен, если в двигатель установлены поршни СТК. Всё благодаря специальным канавкам, проточенным в головке каждого поршня – новшеству инженеров самарской компании.
Если ваш автомобиль уже давно б/у, его компрессия вас вовсе не радует и вы отлично понимаете, что настало время менять поршневую, помните: оптимальными для двигателя будут поршневые группы Самара Трейдинг Компани (СТК).
Секрет «вечной» безмасложорной поршневой при помощи минимального набора инструментов сделать поршень по сути «вечным»:
Компрессионная высота поршня
точка оси поршневого пальца
Что понимается под компрессионной высотой?
Под компрессионной высотой понимается расстояние между днищем поршня и средней точкой оси поршневого пальца (рис. 1). При ремонте двигателя она является значимой величиной, поскольку определяет правильное положение поршня в верхней мертвой точке по отношению к головке блока цилиндров, а также обеспечивает оптимальное сгорание рабочей смеси.
Уплотнение и выступ поршней.
Конструктивно в дизельных двигателях внутреннего сгорания прокладка между головкой и блоком цилиндров значительно толще, чем в бензиновых. Поэтому для того чтобы достичь уплотнения, зазор между головкой и поршнем, находящимся в верхней мертвой точке, должен быть минимальным. Для выполнения этого требования в подобных конструкциях двигателей предусматривается выступ поршня над плоской поверхностью блока цилиндров двигателя на определенную величину (размер «C» на рис. 2). Несмотря на выступ, поршень не бьет об головку блока, так как зазор между ними выдерживается благодаря толщине прокладки. На рис. 3 показано, как замеряется выступ поршня. (читайте следующую статью) как замеряется выступ поршня
Что такое компрессионная высота поршня
СЕРГЕЙ САМОХИН,
АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук, директор фирмы «»
Без преувеличения, поршень — главная деталь автомобильного двигателя, во многом определяющая его облик. Поршень эволюционировал вместе с развитием двигателей и достиг высокой степени совершенства. Конструктивные особенности поршня должны строго соответствовать характеристикам мотора. В противном случае возможны неоправданные материальные затраты при производстве и эксплуатации двигателя и даже его преждевременная кончина.
Высказанный тезис о ключевой роли поршня в конструкции автомобильного двигателя может показаться излишне категоричным. Поэтому приведем несколько аргументов в его подтверждение.
Требования к конструкции поршня определяются его функциональным назначением, той ролью, которую он играет в слаженно функционирующем техногенном организме, называемом поршневым ДВС. Поршень — это элемент, который воспринимает энергию, выделяющуюся при сгорании заряда топливо-воздушной смеси. Она воздействует на поршень в виде тепла и давления газообразных продуктов. Поэтому первое, что должно отличать поршень — способность продолжительно работать в условиях высоких, циклически меняющихся механических нагрузок и тепловых потоков.
Помимо этого поршень должен вносить свой вклад в обеспечение герметичности надпоршневого пространства, препятствуя прорыву газов в картер и встречному поступлению масла из картера в камеру сгорания. Поршень должен обладать высокой износостойкостью рабочих поверхностей и низким трением при минимально возможном зазоре в цилиндре.
Поршень должен… должен…должен… Перечень того, что поршень должен, можно продолжить, но и упомянутых требований достаточно, чтобы понять, насколько непросто им удовлетворить. Тем более что при этом нужно сделать главную деталь двигателя еще и максимально легкой. В противном случае… Действительно, представим, что будет в противном случае.
Масса поршня — параметр, который опосредованно отражает степень совершенства его конструкции. Для среднестатистического двигателя современного легкового автомобиля он составляет г. Допустим, что массу поршня пришлось увеличить граммов эдак на 50. Казалось бы, пустяк. Теперь умножим «привес» на годовую программу производства поршней (обычно это несколько миллионов изделий) и получим несколько «лишних» вагонов стратегического металла. Кстати, металла недешевого. Ведь это только у нас некоторые производители изготавливают поршни из вторсырья. На Западе для этой цели используют только первичные алюминиевые сплавы, иначе невозможно гарантировать качество продукции. К сожалению, это наименьшее из последствий просчетов конструкторов и технологов.
Припомним, что поршень совершает колебательные движения в цилиндре с частотой до 100 раз в секунду. При этом максимальная скорость его перемещения на отрезке пути длиной мм достигает 25 м/с, а возникающие тысячекратные перегрузки превращают каждый лишний грамм в несколько килограммов избыточной нагрузки. Нагрузка передается на поршневой палец, шатун, коленчатый вал и, наконец, воспринимается блоком двигателя. Увеличение массы поршня однозначно отражается на массе каждой из этих деталей, тем более что они работают в циклическом режиме, провоцирующем усталостные явления. В результате исходные граммы «на выходе» превращаются в десятки килограммов качественного металла. Еще раз множим на объем производства двигателей, приплюсуем сюда повышение расхода топлива за счет больших потерь на трение и массы мотора, увеличение вредных выбросов в атмосферу, прочие неучтенные последствия. Удручающее «итого» убедительно доказывает, что поршень — действительно наиболее важная деталь двигателя, во многом определяющая его конструкцию, производственные затраты, экономичность и экологичность. Каков же он, поршень?
Геометрия искривленного пространства
На первый взгляд поршень имеет правильную геометрическую форму цилиндра. Однако, если «пройтись по нему» с точным измерительным инструментом, окажется, что это вовсе не так. Практически все «формы» поршня — неправильные. Их «неправильность» обусловлена желанием обеспечить равномерный, минимально возможный зазор между стенкой цилиндра и поршнем по всей его высоте.
Трудность этой задачи состоит в том, что различные части поршня при работе нагреваются крайне неравномерно, а, значит, неодинаково изменяются в размерах. Ситуация еще более усложняется тем, что поршень имеет неравноже-сткую конструкцию, что также влияет на последствия теплового расширения.
Днище поршня — наиболее термически нагруженная его часть. При работе двигателя его температура может достигать °С. Поэтому диаметр поршня в области огневого пояса уменьшают на мм относительно диаметра цилиндра.
Температура поршня в зоне уплотнительного пояса ниже. К тому же тепловые потоки, проходящие через первое и второе компрессионные кольца, отличаются в несколько раз. Как следствие, перемычки между кольцами будут иметь разную температуру. Верхняя — более горячая, нижняя — менее.
Чтобы компенсировать их неодинаковое тепловое расширение на работающем моторе, диаметр поршня от днища к юбке постепенно увеличивают. Температура юбки плавно спадает в направлении от ее верхней части (в районе маслосъемного кольца) книзу. Этим обусловливается конический характер ее поверхности. В нижней части юбки обычно устраивают обратный конус. Он позволяет поршню при перекладке в нижней и верхней мертвых точках работать более мягко, без резких ударов. В дополнение к этому при движении поршня вниз обратный конус способствует возникновению гидродинамического эффекта, благодаря которому поршень как бы «всплывает» на масляной пленке.
Плавное увеличение диаметра поршня от днища к нижней части юбки, а также наличие на ней обратного конуса придает ему бочкообразную форму в продольном сечении.
Не менее важное условие работоспособности поршня — особая форма в поперечном сечении, отличная от формы круга. Необходимость такой меры обусловлена наличием бобышек, усилений в месте соединения поршня с поршневым пальцем. Составляющие единое целое с днищем поршня, массивные бобышки нагреваются в большей степени, чем соединяющие их части юбки. Как следствие — диаметр поршня «растет» преимущественно в направлении, совпадающем с осью поршневого пальца. Чтобы компенсировать этот эффект, поршень в поперечном сечении делают овальным. Меньшая ось овала совпадает с осью пальца, а овальность обычно составляет мм. Величина небольшая, но очень важная. Именно она позволяет поршню работать в цилиндре с минимальными зазорами.
Таким образом, форма поршня в холодном состоянии характеризуется бочкообразностью и овальностью. Закономерности «искривленной геометрии» поршней были выявлены достаточно давно. Примерно с годов их учитывают при конструировании поршней, вначале авиационных, а затем и автомобильных.
«Материальная» часть
Большинство рецептур материалов, применяющихся для изготовления поршней, было разработано еще в годах. В этом отношении современные поршни недалеко ушли за прошедшие 80 лет. До сих пор они в основным изготавливаются из силумина с процентным содержанием кремния около 12%. Этот сплав был впервые предложен фирмой Mahle, которая внедрила его в массовое производство поршней. В ряде случаев (например, для некоторых дизельных моторов) применяются заэвтектические сплавы алюминия, в которых содержание кремния может достигать 18%. Такие силумины менее пластичны, более капризны в обработке и дороги. В «доалюминиевый» период поршни изготавливались из чугуна.
Силумин оказался очень удачным материалом, сочетающим достаточную прочность с легкостью. Подбор концентрации кремния позволил добиться приемлемого коэффициента теплового расширения, существенно меньшего, чем у чистого алюминия.
Основной способ получения заготовок поршней (практически 99%) — литье, большей частью кокильное. Эта технология отработана буквально до совершенства.
Незначительное количество составляют поршни, заготовки для которых изготавливают методом ковки. Это своего рода эксклюзив, который не применяется на серийных изделиях. Кованые заготовки в силу особой структуры, которую приобретает металл, обладают несколько большей прочностью. Однако это преимущество обычно нивелируется ограничениями по возможной форме заготовки и может быть вовсе сведено к нулю отдельных конструктивных недочетов.
Уважающие себя производители наносят на поверхность поршней различные покрытия. Один из распространенных способов — покрытие поршня оловом (лужение). Реже применяется покрытие свинцом. Слой мягкого металла, толщина которого составляет мкм, уменьшает трение и вероятность «прихвата» поршня с образованием задиров в период обкатки двигателя. Ту же функцию он выполняет и на приработанном двигателе в момент пуска, сопровождающегося «масляным голоданием», и при пиковых нагрузках. Убедительное доказательство действенности этой меры — сравнение состояния поршней двигателей классических моделей ВАЗ первых поколений и ВАЗ . У последних даже при незначительном пробеге на юбке поршней, не имеющих покрытия, обязательно присутствуют задиры. На луженых поршнях «классики» такого явления, как правило, не наблюдалось.
Некоторые производители для уменьшения трения наносят на юбку поршней антифрикционные покрытия, композиции на основе графита, реже — дисульфида молибдена. Толщина слоя покрытия может достигать мкм. Обычно поршни с таким покрытием устанавливаются в цилиндр с минимальным зазором. В результате первоначальной приработки покрытие частично стирается и поверхность поршня приобретает форму, максимально соответствующую цилиндру.
Поршни с прирабатываемым покрытием применяются, например, на современных двигателях VAG, Mercedes, BMW, Opel и других. Выпуск таких поршней недавно освоен некоторыми российскими предприятиями для моторов отечественного производства.
Короче, еще короче…
В последние лет все разработчики двигателей вслед за первопроходцами, японскими конструкторами, двигались примерно в одном направлении и достигли сходных результатов. Поэтому сейчас, взяв в руки поршень, непросто определить, где и для какого мотора он произведен. В то время как десяток-другой лет тому назад отличить, например, японское изделие от американского было проще простого.
Отметим некоторые этапы эволюции поршней. Одна из основных геометрических характеристик поршня — компрессионная высота. Она определяется расстоянием от его днища до оси поршневого пальца. С начала годов наметилась устойчивая тенденция к уменьшению компрессионной высоты поршня. Это позволяет снизить его массу за счет уменьшения размеров бобышек и высоты уплотнительного пояса.
Известны примеры, когда компрессионную высоту поршня удавалось уменьшить до 24 мм. И это при наличии трех колец. Для сравнения: данный параметр у ВАЗовских поршней составляет 38 мм, а у поршней автомобилей ГАЗ выпуска прошлых лет — аж 52 мм! Уменьшение компрессионной высоты поршней стало возможным во многом благодаря переходу на более тонкие кольца.
Процесс наблюдался повсеместно на протяжении годов. Если ранее в порядке вещей считался комплект колец размерностью -4 мм, то сейчас обычным делом становятся наборы порядка -2 мм. Это результат достижений в области технологии. Тонкие кольца обеспечивают меньшие потери на трение, более податливы, быстрее и точнее прирабатываются, а потому обладают лучшими уплотнительными свойствами и, как ни странно, лучше отводят тепло.
Снижение компрессионной высоты повлекло за собой уменьшение размеров юбки поршня. Для центрирования укороченного поршня высокая юбка стала просто излишней. В результате общая высота поршня по отношению к моторам разработки годов сократилась почти вдвое: с мм до мм. Уменьшение размеров поршня повлекло снижение его массы, которое составило %. К каким последствиям это приводит, мы уже упоминали. В частности, это позволило облегчить поршневой палец, уменьшив его диаметр.
На современных двигателях применяются пальцы диаметром мм, в то время как еще недавно нормой считалось мм.
Внедрение многоклапанных моторов также наложило свой отпечаток на конструкцию современного поршня. Повышение их литровой мощности и быстроходности привело к росту тепловых и механических нагрузок на поршень. Поскольку давление на поршень в конечном итоге воспринимается юбкой, возникла задача ее упрочнения. Эффективным способом стало устройство вертикальных ребер жесткости, соединяющих юбку с бобышками. Ребра образуются в результате удаления излишка материала снаружи поршня в районе бобышек. Боковые выборки получили несколько странное название «холодильники». У многих поршней современных моторов они очень большие и глубокие. Глубокие холодильники предполагают уменьшение расстояния между бобышками, а значит, применение короткого пальца и легкого шатуна с узкой верхней головкой.
Достигнутое этим радикальное повышение жесткости юбки позволило постепенно отказаться от прочих способов, применявшихся ранее для компенсации ее теплового расширения. Из конструкции поршня исчезли термокомпенсирующие пазы и стальные пластины. Последние вставлялись в поршень при отливке и работали совместно с юбкой как биметалл, сдерживая ее расширение при нагреве.
Глубокие холодильники и отсутствие термокомпенсации радикально изменили картину теплового расширения поршня. Узкая и более жесткая юбка стала более чувствительной к температурным воздействиям. Для обеспечения работоспособности поршня потребовалось увеличить диаметральные зазоры и ужесточить требования к технологии его производства. Большие зазоры приводят к повышению шумности работы двигателя, что критично для серийного автомобиля. Приходится очень точно подбирать профиль юбки и материал поршня. Добавлением легирующих элементов и подбором технологических режимов литья удается получить материалы с минимальным коэффициентом теплового расширения. Но это тот случай, когда «игра стоит свеч». Благодаря уменьшению размеров и массы поршней удалось значительно снизить механические потери в ЦПГ, которые, как известно, составляют около половины всех потерь в двигателе.
Применение легких поршней с короткой и узкой юбкой существенно сокращает потери на трение, значит, способствует повышению мощности при уменьшении расхода топлива и токсичности.
Очень важный момент — обеспечение эффективной смазки. Раньше основной задачей считался съем масла маслосъемным кольцом. Для его удаления в канавке маслосъемного кольца устраивались отверстия. На нагруженных моторах возникает обратная задача — обеспечения смазки мест контакта юбки с цилиндром при движении поршня вверх. Если этого не делать, не избежать повышенного трения и задиров на юбке, особенно на ее ненагруженной стороне.
Проблема решалась разными способами: устройством отверстий для смазки в зоне маслосъемного кольца, профилированных канавок под маслосъемным кольцом для сохранения в них нужного количества масла. Потребовалось принять дополнительные меры по отводу тепла от поршня. Один из часто применяемых способов — использование форсунок, разбрызгивающих масло на днище поршня. Кстати, такая конструкция применяется в моторах ВАЗ.
На дизельных моторах с наддувом иногда применяют еще более сложные способы борьбы с перегревом поршней. Точно настроенная форсунка подает масло в кольцевую полость, выполненную в теле поршня в районе уплотнительного пояса.
Поршни спортивных моторов несут в себе аналогичные черты, но они выражены еще ярче. Ведь большая мощность означает большие тепловые и механические нагрузки. Методы обеспечения работоспособности поршней те же, а потому и конструктив сегодня практически идентичен. Небольшие отличия — одно компрессионное кольцо вместо двух и еще более короткая юбка. Так удается достичь существенного уменьшения потерь на трение, особенно на высоких оборотах. Известны и некоторые серийные моторы с поршнями подобной конструкции.
Таким образом, поршень современного автомобильного двигателя — сложное техническое изделие, аккумулирующее в себе большое количество знаний из различных областей науки и техники. Конструкция поршня жестко связана с особенностями двигателя, в котором он работает. Бездумный, необоснованный выбор поршня может оказаться не просто неоправданным, например, с технологической или экономической точек зрения, но и нанести серьезный вред работоспособности мотора.
И такие примеры, к сожалению, известны. Вследствие предельно оптимизированной конструкции современные поршни обладают меньшим запасом прочности (во многих смыслах), а потому более требовательны к соблюдению расчетных условий эксплуатации. Повышенные нагрузки, ухудшение условий теплосъема, некачественная смазка могут резко сократить их ресурс._______
Взгляд на поршень со стороны (фото16). Опуская подробности внутреннего устройства поршня, взглянем на него снаружи.
Верхняя часть поршня, представляющего собой «стакан наоборот», называется днищем. Вместе с прилегающей к нему боковой поверхностью, ограниченной канавкой верхнего компрессионного кольца, оно составляет так называемый огневой пояс. Огневой пояс принимает на себя механическую и тепловую нагрузки, возникающие при сгорании смеси.
Область, в которой расположены поршневые кольца, принято называть уплотнительным поясом. Как следует из названия, его задача — уплотнение подвижного места контакта поршня со стенками цилиндра. Уплотнительный пояс должен препятствовать прорыву продуктов сгорания в картер двигателя и попаданию масла в камеру сгорания. Но не только.
Не менее важная функция уплотнительного пояса — отвод тепла, проникающего в тело поршня через поверхности огневого пояса. Трудно поверить, но именно через поршневые кольца в стенку цилиндра и далее — в рубашку охлаждения блока сбрасывается более 80% теплового потока. При этом на долю верхнего компрессионного кольца приходится примерно 60%, второе отводит около 20%. Процессы уплотнения и охлаждения тесно взаимосвязаны.
Хорошее уплотнение означает эффективный теплоотвод. Напротив, нарушение уплотнения (износ и поломка колец или перемычек между ними) приводит к ухудшению охлаждения поршня и, в конечном счете, к его прогару.
Ниже уплотнительного расположен направляющий пояс поршня, образованный, в основном, внешней поверхностью юбки. Он служит для центровки поршня при его перемещении в цилиндре. При нарушении формы или износе уплотнительного пояса центровка нарушается. Если зазоры велики, во время перекладки поршня в мертвых точках его верхняя часть может соударяться со стенкой цилиндра, что сопровождается характерными стуками в двигателе и грозит серьезными последствиями: ускоренным износом стенки цилиндра, нарушением работы колец и поломкой поршня.
Компрессионная высота поршня что это значит
Поршневая группа двигателя включает в себя — поршень, поршневые кольца и поршневой палец. Общая конструкция поршневой группы сложилась еще в период появления первых двигателей внутреннего сгорания. С тех пор ни один из элементов поршневой группы не утратил своего функционального назначения.
Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.
Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуемы. Вот некоторые требования, которым должна соответствовать эта деталь:
— температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С;
— после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя;
— зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.
— изготовление должно быть достаточно дешевым и отвечать условиям массового производства.
Очертания поршня за более стопятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.
В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение.
Днище поршня – поверхность, обращенная к камере сгорания. Днище, своим профилем, определяет нижнюю поверхность камеры сгорания.
Форма днища зависит от формы камеры сгорания, расположения клапанов, от особенности подачи топливо-воздушной смеси в камеру сгорания и объема самой камеры.
маркировка поршней
Днища разных моделей применяемых на двигателях ВАЗ приведены на рисунке. Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой.
Маркировка наносится на поверхность рядом с отверстием под поршневой палец.
На поршне ВАЗ 21213 нанесены цифры -«213», на модели ВАЗ 2123 — «23».
На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка — «08»,»083″, «10».
Поршень 2108 имеет диаметр 76мм , модели 21083 и 2110 — 82мм.
Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку — «12»и «24» и отличаются глубиной выборки под клапана.
Модели 21126 и 11194 отличаются диаметром.
маркировка поршней ваз 2106, подгруппа
Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.
«Жаровым поясом»(огневым) , называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.
Уплотняющий участок — это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.
В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию — через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру. Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведет к его прогоранию.
По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок. Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070мм.
Для второго компрессионного кольца зазор — 0,035-0,060мм, для маслосъемного – 0,025-,0050мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор — 0,2-0,3мм.
Головку поршня образуют днище и уплотняющая часть.
Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.
«Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности. Юбка обеспечивает соосность положения детали к оси цилиндра блока.
Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий. На поверхность юбки(или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.
Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена. Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.
Одним из факторов определяющих геометрию поршня, является необходимость снижения сил трения. Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.
Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.
В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ. На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова. В разработке последующих конструкций принимают участие немецкие компании.
У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции , основанных на новых научных разработках.
В процессе работы, различные участки поршня нагреваются не равномерно, следовательно, и тепловое расширение будет больше там, где выше температура и больше объем металла.
В связи с этим, на уровне днища размер выполняют меньшим, чем диаметр в средней части. Таким образом, в продольном сечении профиль будет коническим. Нижняя часть юбки тоже может иметь меньший диаметр. Это позволяет, при движении вниз, в пространстве между юбкой и цилиндром, создавать масляный клин, который улучшает центрирование в цилиндре.
Для компенсации тепловых деформаций, в поперечном сечении поршень выполнен виде овала. Это связано с тем, что в районе бобышек под поршневой палец сосредоточен значительный объем металла. При нагреве, в плоскости поршневого пальца, расширение будет осуществляться в большей степени. Овальность и бочкообразность детали в холодном состоянии, позволяет иметь поршень, приближающийся к цилиндрической форме, при работающем двигателе.
Такая форма изделия создает сложности при контроле его диаметра. Фактический диаметр можно определить, только замеряя его в плоскости перпендикулярной оси отверстия под поршневой палец на определенном расстоянии от днища.
При этом, для разных моделей это расстояние будет отличаться. Тепловые нагрузки порождают еще одну проблему. Поршни изготавливают из алюминиевого кремнесодержащего сплава, а для блока цилиндров используют чугун. У этих материалов разная теплопроводность и разный коэффициент теплового расширения. Это приводит к тому, что в начале работы двигателя, поршень нагревается и увеличивается в диаметре быстрее, чем увеличивается внутренний диаметр цилиндра.
При и без того малых зазорах, это может приводить к повышенному износу цилиндров, а в худшем случае, к заклиниванию поршня. Для решения этой проблемы, во время отливки поршня, в тело заготовки внедряют специальные стальные или чугунные элементы, которые сдерживают резкое изменение диаметра. Для уменьшения теплового расширения и отвода тепла, на некоторых типах двигателя, используются системы подачи масла во внутреннюю полость поршня.
Поршневой палец обеспечивает шарнирное соединение поршня и верхней головки шатуна. Во время работы двигателя, на поршневой палец воздействуют значительные переменные силы.
Палец и отверстия под палец должны сопрягаться с минимальным зазором, обеспечивающим смазку. На двигателях ВАЗ используется два типа шарнирного соединения «поршень-палец-шатун». На поршнях моделей 2101, 21011, 2105, 2108, 21083 – палец устанавливается в верхней головке шатуна по плотной посадке, исключающей его вращение. Отверстие в поршне под поршневой палец выполнено с зазором, обеспечивая свободное вращение.
В дальнейшем от этой схемы отказались и перешли на схему с «плавающим» пальцем. На поршнях моделей 21213, 2110, 2112, 21124, 21126, 11194, 21128 – палец устанавливается с минимальным зазором и в головке шатуна, и в отверстиях поршня. Для исключения осевого смещения пальца, в поршне, в отверстиях под поршневой палец устанавливаются стопорные кольца. Во время работы, у пальца есть возможность проворачиваться, обеспечивая равномерный износ поверхностей.
Для обеспечения надежной смазки пальцев, в бобышках предусмотрены специальные отверстия.
По результатам фактического замера отверстия под поршневой палец, поршням присваивается одна из трех категорий(1-я, 2-я, 3-я). Разница в размерах для категорий составляет — 0,004мм. Номер категории клеймится на днище. Для обеспечения необходимого зазора, поршневые пальцы, по наружному диаметру подразделяются на три класса.
Отличие в размерах составляет — 0,004 мм. Маркировка класса производится краской по торцу пальца: синий цвет — первый класс, зеленый — второй, красный — третий класс. При сборке, поршню первой категории должен подбираться палец первого класса и т.д.
Особенностью работы шатунного механизма, является то, что до достижения верхней мертвой точки, поршень прижат к одной стороне цилиндра, а после прохождения ВМТ – к другой стороне цилиндра.
При приближении к верхней мертвой точке, на поршень действует максимальная нагрузка, следовательно растет сила давления на палец. Возростающие силы трения препятствуют повороту поршня на пальце. При таких условиях поворот может происходит скачкообразно, со стуком о стенку цилиндра.
Для того, чтобы снизить динамические нагрузки и шум, применяют поршни со смещенным отверстием под поршневой палец. Ось отверстия смещена в горизонтальной плоскости от оси поршня. В работающем двигателе это приводит к возникновению момента силы, который облегчает преодоление сил трения. Такое конструктивное решение позволяет добиться плавности, при смене точек контакта поршня с цилиндром.
На такие изделия обязательно наносится метка для правильной ориентации при его установке. Однако, чем больше будет износ цилиндров и юбки, тем в большей степени будет проявляться стук в цилиндре.
Существуют поршни, в которых применяется не только горизонтальное смещение оси пальца, но и вертикальное. Такое смещение ведет к уменьшению компрессионной высоты.
Поршни, с дополнительным смещением оси отверстия под палец вверх, применяются для тюнинговой доработки двигателя. В качестве основной характеристики для таких поршней используется величина смещения, указывающая на сколько смещен центр отверстия под палец, по сравнению со стандартным изделием.
На рынке продаж, поршень представлен значительным количеством отечественных и иностранных производителей. Независимо от производителя, они должны соответствовать требованиям, рассчитанным для конкретной модели двигателя. Поршни, входящие в комплект, не должны отличаться по массе более чем на ±2,5 грамм. Это позволит снизить вибрации работающего двигателя. Для розничной сети, в комплекты подбираются поршни одной весовой группы. В случае необходимости можно осуществить подгонку поршня по массе.
Зазор между цилиндром и поверхностью поршня должен соответствовать величине установленной для данной модели двигателя.
Поршни номинального размера по своему диаметру относят к одному из пяти классов. Различие между классами составляет 0,01 мм.
Классы маркируются на днище буквами — (А, В, С, D, Е).
В качестве запасных частей поставляются поршни классов — А, С, Е. Этих размеров достаточно, чтобы осуществить подбор деталей для любого блока цилиндров и обеспечить необходимый зазор.
Поршни ВАЗ 11194 и ВАЗ 21126 имеют только три класса (A, B, C) с размерным шагом — 0,01 мм. Кроме номинальных размеров, изготавливаются поршни 2-х ремонтных размеров, с увеличенным наружным диаметром на 0,4 и 0,8 мм.
Для распознавания, на днищах ремонтных изделий ставится маркировка: символ «треугольник» соответствует первому ремонтному размеру(с увеличением наружного диаметра на 0,4 мм), символ «квадрат» — увеличение диаметра на 0,8 мм. До 1986 г. ремонтные размеры отличались от современных.
Так для двигателя 2101 существовало три ремонтных размера: на 0,2мм., 0,4мм., 0,6 мм; для двигателя 21011 два размера: 0,4 мм. и 0,7 мм.
В качестве материала для изготовления поршней применяются сплавы алюминия. Использование кремния в составе сплава, позволило снизить коэффициент теплового расширения и увеличить износостойкость.
Сплавы, где содержание кремния может достигать 13%, называют – эвтектическими. Сплавы с более высоким содержанием кремния относят к заэвтектическим сплавам. Повышение процента содержания кремния улучшает теплопроводные характеристики, однако приводит к тому, что при охлаждении в сплаве происходит выделение кремния в виде зерен размером 0.5-1.0мм.
Это приводит к ухудшению литейных и механических свойств. Для улучшения физико-механических свойств, в сплавы вводят легирующие добавки меди, марганца, никеля, хрома.
Существует два основных способа получения заготовки поршня. Отливка в кокиль – специальную форму, является более распространенным способом. Другой способ — горячая штамповка(ковка). После этапов механической обработки, изделие подвергают термической обработке для повышения твердости, прочности и износостойкости, а также для снятия остаточных напряжений в металле.
Структура кованого металла позволяет повысить прочностные характеристики изделия. Но есть существенные недостатки кованых изделий классической конструкции( с высокой юбкой)– они получаются более тяжелыми. Кроме того, в кованных деталях, невозможно использовать термокомпенсирующие кольца или пластины. Увеличенный объем металла ведет к увеличенной тепловой деформации и необходимости увеличивать зазор между поршнем и цилиндром.
И как следствие – повышенный шум, износ цилиндров, расход масла. Применение кованых поршней оправдано в тех случаях, когда большую часть времени двигатель автомобиля эксплуатируется на предельных режимах.
В современном конструировании поршней, наблюдаются следующие тенденции: уменьшение веса, использования «тонких» поршневых колец, уменьшение компрессионной высоты, использование коротких поршневых пальцев, применение защитных покрытий.
Все это, нашло свое применение, в конструкции Т-образных поршней. Наименование конструкции обусловлено схожестью профиля детали с буквой «Т». На этих изделиях, юбка уменьшена и по высоте и по площади направляющей части. В качестве материала для изготовления таких поршней используется заэвтектический сплав, с большим содержанием кремния. Поршни Т-образной конструкции практически всегда изготавливаются горячей штамповкой.
Принятие разработчиками решения о применении той или иной конструкции поршня всегда предшествует расчет и глубокий анализ поведения всех узлов шатунно-поршневой группы.
Детали современных двигателей рассчитаны на пределе возможностей конструкции и материалов. В таких расчетах предпочтение отдается конструкциям с минимальной стоимостью обеспечивающих утвержденный ресурс и не более. Поэтому любое отклонение от штатных режимов работы двигателя ведет к сокращению ресурса тех или иных деталей и узлов.