Сколько форсунок в двигателе
Перейти к содержимому

Сколько форсунок в двигателе

  • автор:

Сколько форсунок в двигателе

  • Новости
    • Анонсы
    • Деловые новости
    • Культура
    • Общество
    • Происшествия
    • Спорт
    • Новости компаний
    • Старые новости
    • Народные новости
    • Медиагруппа «Патриот»
    • Программы
    • Кино
    • Фотолента
    • Старый фотоальбом
    • Блоги
    • Расписание движения автобусов
    • Запись на прием к врачу
    • Расписание авиарейсов
    • Список управляющих компаний
    • Расписание богослужений
    • График приема граждан депутатами
    • Редакция Портала
    • Информационные партнеры
    • Контакты

    Как проверить форсунки не снимая с двигателя: инструкция

    Исправность и стабильность системы впрыска топлива — залог эффективной работы двигателя внутреннего сгорания. На современных бензиновых и дизельных автомобилях за это отвечают форсунки. Естественный износ, засор и прочие неполадки инжектора приводят к массе проблем — от затруднённого запуска мотора до нестабильных холостых, потери динамики, повышения расхода топлива. Проверять форсунки двигателя рекомендуется не реже одного раза каждые 20 тыс. км пробега. Несмотря на кажущуюся сложность, выполнить эту процедуру можно своими руками несколькими способами. Без специального оборудования.

    Форсунка — это элемент системы принудительного впрыска топлива инжекторного двигателя. Представляет собой клапан, через который в камеру сгорания подаются точно выверенные порции бензина или солярки. Назначение форсунки — своевременно открываться и закрываться, пропуская определённый объём топлива, зависящий от текущего режима работы двигателя. Чтобы горючее лучше перемешивалось с воздухом и легче воспламенялось, оно должно качественно распыляться.

    Конструктивно топливная форсунка должна находиться в верхней части цилиндра. В классических движках впрыск осуществляется непосредственно в камеру сгорания — полость над поршнем в верхней мёртвой точке. Есть также решения, когда форсунка распыляет топливо в предварительную камеру. По задумке инженеров это должно улучшать перемешивание горючего с воздухом.

    Если в верхней части поршня предусмотрено углубление, то оно используется для лучшего смешивания топлива с воздухом. В таких двигателях форсунки установлены в направлении этих углублений, и подают бензин прямо в смесительную камеру в поршне. Такое решение особенно хорошо показало себя в дизельных моторах, поскольку солярка воспламеняется гораздо неохотнее, чем бензин.

    Поскольку система впрыска нуждается в периодическом обслуживании, форсунки устанавливаются на двигателе с учётом их доступности. К ним должно быть также легко добраться, как до свечей зажигания.

    В дизельных двигателях на каждый цилиндр предусмотрена одна форсунка. В устаревших бензиновых моторах, которые пришли на смену карбюраторным, она всего одна. Называется такая система впрыска — моноинжектор. Установлено устройство непосредственно перед дроссельной заслонкой и работает на все цилиндры, независимо от их количества.

    Примерно с 90-х годов прошлого века на всех бензиновых двигателях устанавливается по одной форсунке на каждый цилиндр. То есть, в четырёхцилиндровом силовом агрегате их должно быть четыре штуки. Каждая из них срабатывает в конце такта сжатия перед рабочим ходом поршня. За слаженную и своевременную работу форсунок отвечает электронный блок управления. Момент впрыска и дозирование топлива осуществляется по заложенным в программе таблицам в зависимости от режима работы двигателя и сигналов с многочисленных датчиков.

    Виды форсунок

    Топливные форсунки бывают следующих четырёх видов:

    В бензиновых двигателях повсеместно применяются электромагнитные форсунки. В некоторых простых дизелях установлены гидравлические. Самым технологически сложным и совершенным видом является пьезоэлектрическая форсунка. Они встречаются на дизельных двигателях с системой впрыска Common Rail. Основным их преимуществом является многократный впрыск топлива за один такт, что уменьшает ударные нагрузки и повышает эффективность двигателя.

    Впрыск этого типа часто встречается на одноцилиндровых дизельных моторах. Основные элементы гидравлической форсунки — игольчатый распылитель и пружина. Работает следующим образом. Топливный насос высокого давления нагнетает солярку в форсунку. Пока давления недостаточно для преодоления сопротивления пружины, клапан закрыт. При достижении расчётного давления сопротивление пружины преодолевается, игла кратковременно открывает калиброванное отверстие и происходит впрыск топлива.

    Система этого типа называется гидравлической, поскольку работоспособность обеспечивается только за счёт давления топлива. За своевременный впрыск отвечает насос и пружина в форсунке. Обычно для регулировки давления её срабатывания предусмотрен регулировочный винт. В более примитивных моделях это делается при помощи металлических шайб, которые подкладываются под пружину.

    Электромагнитные форсунки считаются наиболее удачным изобретением. Они сравнительно простые и одновременно надёжные. Но главное их преимущество в том, что ими можно очень точно управлять при помощи электрических импульсов. Практически на всех серийных бензиновых машинах установлены именно эти форсунки.

    Рассмотрим, из чего состоит форсунка этого типа. Основной элемент — игольчатый клапан, приводимый в действие электромагнитом. Для подачи электрических импульсов и управления форсункой предусмотрен разъём. Принцип работы тоже очень простой. В нужный момент с ЭБУ подаётся импульс, который приводит в действие электромагнит. Клапан открывается, и находящееся под постоянным давлением топливо принудительно впрыскивается в камеру сгорания.

    Признаки неисправности форсунок

    Определить сбои в системе впрыска предварительно можно без доскональной диагностики — по изменениям в поведении двигателя. Чтобы он нормально работал, должно выполняться сразу несколько условий. Топливо должно впрыскиваться своевременно, в точно выверенном объёме, зависящем от режима работы мотора, и качественно распыляться. Если хоть одно из этих условий не выполняется, появляются проблемы.

    Форсунки двигателя: основные виды и частые неисправности

    Фото: Shutterstock

    Разбираемся, какие виды топливных форсунок существуют, в чем разница и какие поломки чаще всего встречаются.

    Эксперт в этой статье: Александр Тихонов, продукт специалист по системам бензинового впрыска Bosch

    Что такое форсунки

    Топливные форсунки (или инжектор) — это элемент системы впрыска автомобиля с двигателем внутреннего сгорания, работающего на бензиновом и дизельном топливе. Они отвечают за равномерную подачу горючей смеси и ее последующее эффективное сгорание. Принцип работы всех форсунок примерно одинаков, но в зависимости от типа мотора их конструкции рабочие характеристики различаются.

    Фото: Shutterstock

    Фото: Shutterstock

    Изобретение форсунки как механизма распыления под давлением жидкости или порошка принадлежит российскому инженеру Владимиру Шухову [1]. В автомобильной промышленности их внедрение неразрывно связано с именем Рудольфа Дизеля и Роберта Боша, предложившего несколько типов впрыскивающих устройств.

    Сегодня существует несколько видов форсунок, которые предназначены для разного впрыска и типов моторов. Но все они обеспечивают:

    • дозировку топлива;
    • распыление горючей смеси;
    • экономичный расход топлива;
    • снижение вредных выбросов.

    Как работает форсунка

    В самом простом варианте форсунка чем-то напоминает насос. Попадающее в нее топливо под высоким давлением подается в камеру сгорания в мелкодисперсном виде. Поэтапно процесс работы форсунки с электронным управлением выглядит следующим образом:

    1. топливный насос подает бензин или дизель в канал форсунки;
    2. электронный блок управления (ЭБУ) с помощью датчиков определяет правильное время для запуска и объем топлива для распыления;
    3. когда ЭБУ активирует открытие запорного клапана, происходит впрыск.

    Устройство форсунки

    Все существующие сегодня форсунки различаются по конструкции и расположению. В уже устаревших моносистемах они размещаются возле дроссельной заслонки. При распределенном впрыске форсунки установлены на впускном коллекторе. Когда впрыск топлива осуществляется непосредственно в цилиндры, форсунки располагаются в головке блока по одной на каждый.

    Фото: Shutterstock

    • герметичного корпуса;
    • сетчатого фильтра;
    • запорного клапана или иглы;
    • распылителя с одним или более сопел.

    Виды форсунок

    Форсунки для дизельных и бензиновых моторов — разные. Это связано с механизмом сжигания топлива в каждом из агрегатов. Их главное отличие в давлении — у дизельных моторов этот показатель намного выше.

    Механические

    Одни из самых простых видов, которые все реже применяются в конструкции автомобилей, как правило, дизельных. Работа механической форсунки основана на давлении топливной системы. В дизельных моторах за него отвечает пара насосов низкого (ТННД) и высокого давления (ТНВД). В момент подачи топлива создаваемое давление поднимает иглу и сопло открывается. Так происходит впрыск, после чего под давлением пружины игла вновь запирает сопло.

    Электромагнитные

    Используются в инжекторных моторах бензиновых автомобилей и дизелях. Конструктивно такая форсунка также состоит из корпуса, запорного клапана и сопла. Но привод осуществляется за счет магнитного поля. Для этого форсунка имеет электромагнит (обмотка в верхней части элемента) и якорь, который соединен с иглой.

    Движение начинается, когда на обмотку подается напряжение. Алгоритм частоты и продолжительности импульса определяется электроникой. Создаваемое магнитное поле притягивает якорь к магниту, оказывая тем самым давление на пружину. В этот момент происходит открытие сопла и впрыск. Как только напряжение прерывается, пружина срабатывает и клапан закрывается.

    Электрогидравлические

    Конструкция электрогидравлических форсунок сложнее, в основе их работы лежит разница давления жидкостей. Топливо в таких форсунках подается сразу в две камеры — верхнюю и нижнюю. В исходном положении давление в них одинаковое и пружина удерживает иглу. При открытии электромагнитного клапана, давление в верхней камере падает, а топливо уходит «в обратку». Соответственно в нижней камере давление наоборот возрастает, благодаря чему игла поднимается и происходит впрыск.

    Пьезоэлектрические

    Конструкция такой форсунки повторяет электрогидравлическую, с тем различием, что за привод отвечает пьезоэлектрический элемент. По структуре это множество керамических пластин плотно спаянных между собой (их еще называют кристаллами). Под воздействием электрического напряжения они расширяются, воздействуя на запорный клапан в камере управления. В итоге давление над иглой падает и происходит впрыск.

    Пьезоэлектрические форсунки отличаются исключительным быстродействием в сравнении с электромагнитными системами. В среднем открытие клапана в них происходит в четыре раза быстрее.

    Насос-форсунка

    Такие форсунки объединяют в себе сразу два устройства: распылитель и насос. Они предназначены для прямого впрыска и работают без ТНВД. Количество насос-форсунок всегда соответствует числу цилиндров — по одной на каждый. В них используется одноплунжерный насос, который приводит в действие распредвал. В зависимости от модели может использоваться электромагнитный или пьезоэлектрический клапан. Управляются насос-форсунки электронным блоком управления.

    Форсунки в автомобиле: где находятся и для чего нужны? Где находится инжектор Сколько форсунок в двигателе

    Топливными форсунками оснащаются современные инжекторные системы в большинстве дизельных и бензиновых двигателей.

    Фото: clauretano (flickr.com/photos/clauretano/)

    Виды форсунок

    По методу впрыска современные топливные форсунки делятся на три вида — электромагнитные, электрогидравлические и пьезоэлектрические.

    Электромагнитные форсунки

    Такой вид форсунок зачастую устанавливают в бензиновые двигатели . Подобные форсунки имеют простое и понятное устройство, состоящее, собственного говоря, из клапана электромагнитного типа, распылительной иглы и сопла.

    Принцип работы электромагнитных форсунок также довольно прост. Подача напряжения на обмотку возбуждения клапана происходит строго в установленное время, в соответствии с заложенной программой.

    Напряжение создает определенное магнитное поле, которое затягивает грузик с иглой из клапана, тем самым высвобождая сопло. Результатом всех действий является впрыск нужного количества топлива. По мере снижения напряжения, игла принимает исходное положение.

    Электрогидравлические форсунки

    Следующий вид форсунок применяется в дизелях, а также в двигателях с топливной системой Common Rail. Электрогидравлические форсунки в отличие от предыдущего вида имеют более сложное устройство, основными элементами которого являются дроссели (впускной и сливной), электромагнитный клапан и камера управления.

    В основе работы такого типа форсунок лежит использование высокого давления топливной смеси как в момент впрыска, так и при его остановке. На начальном этапе электромагнитный клапан закрыт, а игла форсунки максимально прижата к своему седлу в камере управления. Прижимной силой является сила давления топлива, которая направлена на поршень, расположенный в камере управления.

    Одновременно с этим с другой стороны топливо давит и на иглу, но поскольку площадь поршня заметно больше, чем площадь иглы, то в виду этой разницы сила давления на поршень больше, чем сила давления на иглу, которая плотно прижимается к седлу, перекрывая доступ топливу. В это время подача топлива не осуществляется.

    Полученный сигнал от блока управления запускает клапан с одновременным открытием сливного дросселя. Происходит вытекание топлива из камеры управления в сливную магистраль. Дроссель впуска в это время препятствует тому, чтобы давление в камере сгорания и во впускной магистрали быстро выровнялось.

    При этом, по мере снижения давления на поршень ослабевает его прижимное усилие, а поскольку давление на иглу не изменяется, то она поднимается, и в этот момент происходит впрыск топлива.

    Пьезоэлектрические форсунки

    Последний вид форсунок принято считать наиболее совершенным и перспективным среди всех описанных видов. Пьезофорсунки используются на дизельных ДВС с системой подачи топлива Common Rail. Конструктивно такие форсунки состоят из пьезоэлемента, толкателя, переключающего клапана, а также иглы.

    Пьезофорсунки работают по принципу гидравлического механизма. Изначально игла размещается в седле при воздействии на нее высокого давления ТС. При поступлении электрического сигнала на пьезоэлемент, происходит его изменение в размере (его длина увеличивается), за счет чего пьезоэлемент буквально толкает поршень толкателя, который в свою очередь давит на поршень переключающего клапана.

    Это приводит к открытию переключающего клапана, через него топливо устремляется в сливную магистраль, давление в верхней части иглы снижается и за счет не изменившегося давления снизу, игла поднимается. При подъеме иглы происходит впрыск топлива.

    Основным преимуществом такого вида форсунок является их скорость срабатывания (до 4 раз быстрее, чем в клапанной системе), что позволяет обеспечить многократный впрыск за один рабочий цикл двигателя. При этом объем подаваемого топлива зависит от двух параметров — от продолжительности воздействия на пьезоэлемент, и от давления топлива в рампе.

    Преимущества и недостатки форсунок

    И в завершении хотелось бы сказать несколько слов о том, какие же преимущества и недостатки имеются у топливных форсунок, если сравнивать их с карбюраторами .

    Преимущества топливных форсунок:

    • Экономия при расходе топлива благодаря точной системе дозирования;
    • Минимальный уровень токсичности двигателей, оснащенных топливными форсунками;
    • Возможность увеличения мощности силового механизма до 10%;
    • Простота и легкость при запуске в любую погоду;
    • Возможность улучшения динамических показателей любого автомобиля;
    • Отсутствие необходимости в частой замене и чистке

    Недостатки форсунок:

    • Возможные сбои в работе или серьезные поломки в результате использования топлива низкого качества , которое губительно сказывается на чувствительном механизме форсунок. ремонта и замены форсунки в целом и отдельных ее элементов.

    Схемы подготовлены по материалам Volkswagenag.com

    Топливная форсунка (ТФ), или инжектор, относится к деталям топливной системы впрыска. Она управляет дозированием и подачей ГСМ с его последующим разбрызгиванием в камере сгорания и соединением с воздухом в единую смесь.

    ТФ выступают в роли главных исполнительных деталей, относящихся к системе впрыска. Благодаря им происходит разделение топлива на мельчайшие частицы путем разбрызгивания и его поступление в двигатель. Форсунки для любого типа моторов выполняют одинаковое назначение, однако различаются конструкционно и по принципу действия.

    Данный вид изделий отличается индивидуальным изготовлением под конкретный тип силового агрегата. Иначе говоря, универсальной модели этого устройства не существует, поэтому переставлять их с бензинового мотора на дизельный нельзя. В качестве исключения можно привести пример гидромеханических моделей от BOSCH, устанавливаемых на механические системы, работающие на непрерывном впрыске. Они находят широкое применение для различных силовых агрегатов в качестве составного элемента системы «K-Jetronic», хотя и имеют несколько модификаций, не связанных между собой.

    Расположение и принцип работы

    Схематично форсунка – это электромагнитный клапан, управляемый программно. Она обеспечивает подачу топлива в цилиндры в установленных дозах, причем установленная система впрыска определяет вид используемых изделий.

    Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

    Расположение форсунок зависит от конкретного типа системы впрыска:

    Центральный – размещаются перед дроссельной заслонкой во впускном трубопроводе.

    Распределенный –всем цилиндрам соответствует отдельная форсунка, размещаемая у основания впускного трубопровода и осуществляющая впрыск ГСМ.

    Непосредственный –форсунки находятся вверху стенок цилиндра, что обеспечивает впрыск напрямую в камеру сгорания.

    Форсунки для бензиновых моторов

    Бензиновые моторы комплектуются следующими типами инжекторов:

    Одноточечные – подают топливо, расположены до дроссельной заслонки.

    Многоточечные – за подачу ГСМ на цилиндры отвечают несколько форсунок, располагаемых перед трубопроводами.

    ТФ обеспечивают подачу бензина в камеру сгорания силовой установки, при этом конструкция таких деталей неразборная и не предусматривает ремонт. По стоимости они дешевле тех, что устанавливаются на дизельных моторах.

    Как деталь, обеспечивающая нормальную работу топливной системы автомобиля, форсунки часто выходят из строя по причине загрязнения расположенных на них фильтрующих элементов продуктами сгорания. Подобные отложения перекрывают распылительные каналы, что нарушает работу ключевого элемента – игольчатого клапана и прерывает поступление топлива в камеру сгорания.

    Форсунки для дизельных моторов

    Правильную работу топливной системы дизельных двигателей обеспечивают два типа устанавливаемых на них форсунок:

    Электромагнитные, за работу которых отвечает специальный клапан, регулирующий поднятие и опускание иглы.

    Пьезоэлектрические, работающие за счет гидравлики.

    Правильная настройка форсунок, а также степень их износа влияет на работу дизельного мотора, выдаваемую им мощность и объем расходуемого горючего.

    Поломку или неисправность работы дизельной форсунки автовладелец может заметить по ряду признаков:

    Увеличился расход топлива при нормальной тяге.

    Машина не хочет двигаться с места и дымит.

    Способы чистки форсунок

    Для решения вышеназванных проблем требуется периодическая промывка топливных форсунок. Для устранения загрязнений применяют ультразвуковую очистку, используют особую жидкость, выполняя процедуру вручную, либо добавляют специальные присадки, позволяющие очистить форсунки без разбора мотора.

    Заливка промывки в бензобак

    Наиболее простой и щадящий способ очистки загрязненных форсунок. Принцип действия добавляемого состава заключается в постоянном растворении с его помощью имеющихся отложений в системе впрыска, а также частичное предотвращение их появления в будущем.

    Такая методика хороша для новых машин либо автомобилей с небольшим пробегом. В этом случае добавление промывки в бак с топливом выступает профилактикой, позволяющей поддерживать силовую установку и топливную систему машины в чистоте. Для машин с серьезными загрязнениями топливной системы данный способ не подходит, а в ряде случаев может нанести вред, усугубив имеющиеся проблемы. При большом количестве загрязнений смытые отложения попадают в форсунки и забивают их еще больше.

    Чистка без снятия с двигателя

    Промывка ТФ без разбора двигателя выполняется путем подключения промывочной установки непосредственно к мотору. Такой подход позволяет отмыть скопившуюся грязь на форсунках и топливной рампе. Двигатель на полчаса запускается на холостом ходу, подача смеси происходит под давлением.

    Данный способ не используется на сильно изношенных двигателях, а также не подходит для автомобилей с установленной системой КЕ-Jetronik.

    Чистка со снятием форсунок

    При сильных загрязнениях двигатель разбирают на специальном стенде, снимают форсунки и выполняют их индивидуальную очистку. Подобные манипуляции дополнительно позволяют определить наличие неисправностей в работе форсунок с их последующей заменой.

    Чистка ультразвуком

    Очистка форсунок выполняется в ультразвуковой ванне для предварительно снятых деталей. Вариант подходит при сильных загрязнениях, не убирающихся очистителем.
    Операции по очистке форсунок без снятия с двигателя в среднем обходятся владельцу автомобиля в 15-20 у.е. Стоимость диагностики с последующей чистой для одной форсунки в ультразвуке либо на стенде составляет около 4-6 у.е. Комплексные работы по промывке и замене отдельных деталей позволяют обеспечить бесперебойную работу топливной системе еще на полгода, добавив 10-15 тыс. км. пробега.

    Как правило, на сегодня, большое количество автомобилей оборудуются специальными системами впрыска горючего. Интересно будет узнать, о том что идея о внедрении такой системы в автомобильный мир появилась уже в далеких 50-х годах. Так, 1951 год стал годом рождения первой системы впрыска топлива, именно в этом году компания Bosch укомплектовала ею 2-х тактный двигатель купе Goliath 700 Sport.

    Последователем Bosch стал Mercedes-Benz 300 SL, который подхватил эстафету в 1954 году. И вот, уже в конце 70-х годов началось массовое, серийное введение инжекторных систем впрыска топлива. Как оказалось на практике, впрыск топлива имеет множество достоинств и отличных характеристик, по которым такая система превосходит карбюраторную подачу топлива. От карбюраторного принципа смесеобразования система впрыска топлива отличается более безошибочной дозировкой топлива, а следовательно, и большей экономичностью и приемистостью автомобильного транспорта. Также система впрыска топлива славится меньшей токсичностью выхлопных газов. Можно сделать такой вывод, что переоценить работу системы впрыска топлива практически невозможно.

    Форсунка является одной из аниболее важных частей системы впрыска топлива, поэтому она во многом и определяет эффективность и надежность работы движка. Однако, именно она работает в наиболее тяжелых условиях. Каждому автолюбителю важно знать что это за деталь и как она работает, дабы в случае какой-либо неисправности системы впрыска топлива произвести правильную диагностику поломки, ведь именно от состоянии форсунки зависит хорошая работоспособность самой системы. В данной статье мы акцентируем внимание именно на строении форсунки, ее видах и принципе работы. Итак, начнем.

    1. Типы инжекторных форсунок

    Для начала давайте разберемся, что такое форсунка и какое ее предназначение. Деталь форсунки (по-другому можно назвать инжектором) представляет собой конструктивный элемент системы впрыска горючего. Главными тремя функциями, которые выполняет форсунка являются дозированная подача топлива, распыление данной топливной жидкости в камере сгорания (другими словами – впускной коллектор), а также возникновение топливно-воздушной смеси.

    Как правило, форсунка приводится в эксплуатацию в системах впрыска топлива как дизельных, так и двигателей, работающих на бензине. Если говорить о современных двигателях, установленные в них форсунки руководствуются электронным управлением впрыска. Данную деталь принято разделять на три типа, в зависимости от способа произведения впрыска.

    Итак, существуют такие три вида форсунки:

    1. Электрогидравлическая

    2. Электромагнитная

    3. Пьезоэлектрическая

    Теперь о каждом виде поподробнее.

    Форсунка электромагнитная

    Данную форсунку, как правило, принято устанавливать именно на бензиновых движках, в том числе укомплектованных системой непосредственного впрыска. Сама по себе электромагнитная форсунка имеет довольно обычное строение и состоит непосредственно из электромагнитного клапана с иглой и сопла. Работает такая форсунка по своеобразному принципу. В соотношении с заложенным алгоритмом, установленный электронный блок управления способен обеспечить в нужный момент передачу напряжения прямиком на обмотку возбуждения клапана. В этот момент создается своеобразное электромагнитное поле, которое может преодолевать усилие пружины, втянуть якорь с иглой и отпустить сопло. После проделанной операции осуществляется впрыск топлива. После того момента, как напряжение исчезнет, пружина возвращает иглу форсунки обратно на седло.

    Форсунка электрогидравлическая

    Как правило, электрогидравлическую форсунку принято приводить в действие на двигателях использующих дизель, в том числе и таких, которые укомплектованы системой впрыска Common Rail. Сама по себе электрогидравлическая форсунка состоит из впускной и сливной дроссели, камеры управления, а также электромагнитного клапана. Такая форсунка приводится в эксплуатацию по принципу применения в процессе работы давления топлива, как при произведении впрыска, так и при его окончании.

    Как правило, на начальной позиции электромагнитный клапан обесточен и находится в закрытом состоянии, игла форсунки прислоняется к седлу благодаря мощности давления топлива на поршень, которое имеет место в камере управления. В этом случае впрыск топлива не производится. В этот момент давление топлива на иглу ввиду несоответствии площадей контакта порядка меньше чем давление на поршень.

    посылает сигнал и по его команде в работу включается электромагнитный клапан, который осуществляет открытие сливной дроссели. В свою очередь, топливо, которое выходит из камеры управления, начинает проходить через дроссель прямиком в сливную магистраль. В таком случае, дроссель способна воспрепятствовать скорой стабилизации давлений в камере управления и впускной магистрали. Таким образом, происходит снижение давления на поршень, но давление топлива на иглу остается на прежнем уровне. Под воздействием давления игла двигается вверх и происходит впрыск топлива.

    Форсунка пьезоэлектрическая

    Пьезоэлектрическая форсунка является самым совершенным и надежным устройством, которое способно обеспечить впрыск горючего. Такую форсунку, как правило, устанавливают на двигателях, использующих дизель, которые укомплектованы системой впрыска Common Rail. Такой вид форсунки имеет много достоинств, среди которых имеет место быстрота срабатывания Данная форсунка превосходит всех своих оппоненток и является самым надежным устройством, обеспечивающим впрыск горючего.

    Преимуществом пьезофорсунки является быстрота срабатывания, которая в четыре раза превышает быстроту электромагнитного клапана. Из этого следует осуществимость многократного впрыска горючего в период одного цикла, а также безошибочная дозировка впрыскиваемого горючего.

    Вся операция происходит благодаря использованию пьезоэффекта в руководстве форсункой, который был основан на изменении показателей длины пьезокристалла под воздействием напряжения. Вся конструкция пьезоэлектрической форсунки состоит из пьезоэлемента, переключающего клапана, толкателя, а также иглы, которые умещаются в корпусе. Пьезофорсунка приводится в работу по такому же принципу как и электрогидравлическая, а именно по гидравлическому. В связи с высоким давлением горючего, игла, находящаяся на исходной позиции, посажена на седло.

    Во время подачи электрического сигнала на пьезоэлемент, производится увеличение его длины, при этом это позволяет пьезоэлементу толкать усилие непосредственно на поршень толкателя. В этот момент, переключающий клапан приходит в открытое состояние и топливо проходит в сливную магистраль. При этом падает давление, которое находится выше иглы. При этом, за счет давления в нижней части игла идет вверх и происходит впрыск горючего. Как правило, количество впрыскиваемого топлива может определяться длительностью воздействия на пьезоэлемент, а также уровнем давления горючего в топливной рампе.

    2. Принцип работы форсунки инжектора

    Для того, чтобы разобраться в принципе работы форсунки, нужно в общем понять работу всей системы впрыска топлива. Итак, данная система производит подачу горючего в цилиндр двигателя либо во впускной коллектор по принципу прямого впрыска благодаря форсунке, или как принято называть еще, инжектора. Исходя из этого, все автомобили, которые комплектуются такой системой, получают название инжекторных.

    Классифицирование инжекторного впрыска проводится в зависимости от того, какой принцип работы инжектора, а также по месту его установки и суммарному количеству инжекторов. Как правило, центральный впрыск топлива осуществляется по такому принципу: во всеобщий впускной трубопровод, с помощью форсунки впрыскивается топливо на все цилиндры двигателя.

    Форсунку, как мы уже упоминали, принято устанавливать именно перед дроссельной заслонкой, в том месте, где должен находиться Она показывает низкое сопротивление обмотки электромагнита (до 4-5 Ом). Как же распределяется впрыск? С помощью отдельных форсунок происходит впрыск топлива во впускные трубопроводы каждого имеющегося цилиндра. Они занимают место у основания впускных трубопроводов (как правило, у корпуса головки блока цилиндров) и отличаются довольно-таки высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Он может быть и меньшим, но при условии наличия дополнительного блока сопротивлений.

    Как известно, большинство современных автомобилей снабжаются системой именно распределенного впрыска топлива. Как мы уже говорили, она работает по принципу, что отдельная форсунка отвечает за свой цилиндр. Важно знать, что каждая система распределенного впрыска топлива делится на четыре разных типа:

    1. Одновременный

    2. Попарно-параллельный

    3. Фазированный

    Теперь о каждом поподробнее. Одновременный тип характеризируется подачей горючего от всех форсунок системы одновременно во все цилиндры. Что ж, название говорит само за себя. Попарно-параллельный тип впрыска подразумевает парное открытие форсунок, при котором, одна открывается непосредственно пред циклом впуска, а вторая — перед циклом впуска. Главной отличительностью этого типа является применение попарно-параллельный принцип открытия форсунок в момент запуска двигателя, или же в период аварийного режима неисправности датчика положения распредвала. В период эксплуатации автомобиля, то есть во время движения, в работу включается фазированный впрыск топлива. Это тип впрыска. При котором каждый инжектор открывается перед тактом впуска. Наконец, прямой тип впрыска происходит непосредственно в камеру сгорания.

    Некоторые автомобили новейшего поколения могут похвастаться подачей топлива непосредственно в камеру сгорания (это и есть непосредственный впрыск). Отличительной чертой форсунок таких двигателей является наличие высокого рабочего напряжения электромагнита, которое достигает до 100 В. Маркировки форсунок отражают фабричную, или торговую, марку либо название, а также каталожный номер, или наименование и номер серии.

    Как правило, горючее подается к форсунке под определенным давлением, которое зависит от режима работы движка. Принцип действия инжектора предполагает использование сигналов микроконтроллера, который в свое время получает данные от датчиков. Поступившие на электромагнит электрические импульсы, которые исходят от блока управления, заставляют работать игольчатый клапан, который открывает и закрывает канал форсунки. Все количество топлива которое распыляется зависит от длительности импульса, которая задается непосредственно блоком управления. Если говорить о форме и направлении распыляемого факела очень важны при смесеобразовании и определяются количеством и расположением распылительных отверстий.

    Как правило, если топливо впрыскивается во всеобщий трубопровод с помощью одной форсунки, то это называется системой моновпрыска. Такая система на сегодня не пользуется особым спросом среди автомобилестроителей. Большинство автопроизводств предпочитают использовать сразу две форсунки в системе впрыска.

    Как ни крути, но как и любая другая система, инжекторная ситсема имеет и свои недостатки, среди которых достаточно высокая цена на узлы инжектора, низкая уровень ремонтопригодности, высокие запросы по поводу состава и качества горючего, крайняя необходимость использования специального оборудования для диагностики каких-либо поломок, и, конечно же, довольно высокие ценовые показатели стоимости ремонта.

    3. Как устроена форсунка инжектора

    А теперь давайте рассмотрим конструкцию форсунки, из чего же она состоит. Каждому автолюбителю известно, что подача топлива в форсунках происходит преимущественно сверху вниз. Если говорить в общих чертах, можно сказать, что форсунка состоит из одного, реже двух каналов. Как правило, по первому к выходу подходит распыляемая жидкость, а по второму проходят жидкость, пар, газ, который служит для распыления первой жидкости. Как показывает практика, чистая и качественная форсунка способна дать конусообразный распыл, а факел получается непрерывный и ровный.

    Если детализировать построение форсунки, можно сказать, что она, в первую очередь состоит из корпуса. В верхней части корпуса можно отыскать так называемый гидравлический разъем, который, в свою очередь, закрепляется к топливной рампе. Благодаря наличию насоса и обратного клапана в рампе непрерывно поддерживается установленное давление горючего. Известно, что форсунка прикрепляется к топливной рампе посредством специального зажимного устройства.

    Нижнюю часть форсунки занимает распылительная пластина с отверстиями для впрыскивания топлива. Для того, чтобы обеспечить герметичность соединения сверху и снизу находятся специальные уплотнительные кольца. С одной стороны форсунки находится электрический разъем, который используется для управления соленоидом форсунки. Весь основной механизм находится внутри форсунки и состоит из фильтрующей сетки, электромагнитной обмотки, седлом клапана, пружины, игольчатого клапана с якорем соленоида и запорным сферическим элементом, а также распылительной пластины. Сопло принято считать самым важным элементом форсунки.

    Топливная форсунка является основным исполнительным устройством в любой системе впрыска. Ее главная задача — распылять топливо на мелкие частицы в нужном месте впускного воздушного тракта или непосредственно в цилиндрах двигателя. Форсунки бензиновых и дизельных двигателей выполняют одинаковые функции, но по принципу действия и конструкции — это совершенно разные устройства. В данной главе описываются форсунки только для бензиновых двигателей.

    ФОРСУНКИ ВПРЫСКА: ОБЩИЕ СВЕДЕНИЯ

    Форсунки впрыска бензина (ФВБ) по конструктивному устройству и по типу реализованного в них способа управления подразделяют на гидромеханические, электромагнитные, магнитоэлектрические и электрогидравлические. В современных системах впрыска бензина используются в основном первые два вида.

    По назначению в системе впрыска форсунки бывают пусковыми и рабочими. Рабочие форсунки делят на два вида: центральные форсунки для одноточечного импульсного впрыска и клапанные форсунки для впрыска топлива с распределением по цилиндрам. Разрабатываются рабочие форсунки для впрыска бензина под высоким давлением непосредственно в цилиндры двигателя внутреннего сгорания (ДВС).

    Следует отметить, что форсунки впрыска бензина изготовляются под каждый тип двигателя индивидуально, т.е. форсунки впрыска не унифицируются и, как правило, не могут переставляться с одного типа двигателя на другой. Исключение составляют универсальные гидромеханические форсунки фирмы BOSCH для механических систем непрерывного впрыска бензина, которые широко применялись на различных двигателях в составе системы «K-Jetronic». Но и эти форсунки имеют несколько не взаимозаменяемых модификаций.

    Почти все форсунки впрыска бензина содержат внутри корпуса мелкосетчатый фильтр тонкой очистки топлива, который часто является причиной нарушения работоспособности форсунки. Восстановить нормальную работу форсунки с загрязненным фильтром можно принудительной промывкой всей системы впрыска специальным многокомпонентным растворителем, который добавляют в моторное топливо (в бензин), и двигатель включают в работу на холостом ходу на 30-40 мин. В настоящее время для этой цели продаются специальные промывочные установки и растворитель. Промывка форсунки вне двигателя путем «отмачивания» в ацетоне или продувкой воздухом не эффективна.

    Следует также заметить, что современные форсунки впрыска бензина не разборные и ремонту с демонтажом на детали не подлежат.

    ГИДРОМЕХАНИЧЕСКИЕ ФОРСУНКИ

    Гидромеханические форсунки (ГМ-форсунки) бывают открытого и закрытого типов. Первый тип ГМ-форсунок представляет собой жиклерные форсунки и в современных системах впрыска бензина не используется. ГМ-форсунки закрытого типа предназначены для применения в механических системах непрерывного распределенного по цилиндрам впрыска топлива на бензиновых ДВС. Такие форсунки не имеют электрического управления. Они открываются под напором бензина, а закрываются возвратной пружиной. Давление напора бензина, при котором закрытая форсунка открывается, называется начальным рабочим давлением (НРД) форсунки и обозначается как Рфн. ГМ-форсунки закрытого типа устанавливаются в предклапанных зонах впускного коллектора для каждого цилиндра в отдельности.

    По конструкции закрытые форсунки могут различаться устройством запорного клапана и способом крепления в литом корпусе впускного коллектора. По типу запорного устройства закрытые форсунки подразделяют на форсунки со сферическим, дисковым и штифтовым клапаном; по способу крепления — на вставные и резьбовые.

    Закрытые ГМ-форсунки в дозировании топлива участия не принимают. Их главная функция — распылять бензин на горячие впускные клапаны двигателя. При этом распыленные частицы бензина переходят в парообразное состояние, а впускной клапан охлаждается. Чтобы не было соприкосновения струи бензина со стенками предклапанной зоны впускного коллектора, бензин распыляется с раскрывом на угол не более 35е, а форсунка по отношению к клапану устанавливается по строго заданной геометрии.

    Дозирование топлива в механической системе впрыска производится изменением напора бензина у постоянно открытого распылительного сопла форсунки. При этом давление напора формируется давлением вне форсунки — в дифференциальном клапане дозатора-распределителя механической системы впрыска.

    Для того чтобы клапан форсунки закрытого типа находился в состоянии «открыто», давление бензина в клапанной полости 6 должно быть все время несколько выше усилия Рп возвратной пружины 10 (Рфн > Р„).

    Это достигается заданием достаточно высокого (не менее 6 бар) рабочего давления Ps (РДС) в системе (в топливоподающей магистрали до дозатора-распределителя) и поддержанием РДС на постоянном уровне.

    ОСНОВНЫМИ ПАРАМЕТРАМИ ЗАКРЫТОЙ ФОРСУНКИ ЯВЛЯЮТСЯ ПЯТЬ ПОКАЗАТЕЛЕЙ.

    1. Начальное рабочее давление Рфн (НРД) форсунки сразу после ее сборки на заводе-изготовителе (давление открывания новой форсунки). НРД для закрытых форсунок разных модификаций лежит в пределах 2,7…5,2 кг/см2. Для новых форсунок из одного типоразмерного ряда НРД может отличаться не более чем на ±20%. При подборе комплекта форсунок на двигатель различие НРД не должно превышать ±4%. В продажу (как запчасти) форсунки поступают с одинаковым НРД в упаковке. Замена форсунок неполным комплектом может стать причиной нарушения нормальной работы двигателя.

    2. Минимальное рабочее давление Рф т|„ (МРД) форсунки после ее приработки на двигателе (после 5000 км пробега). Это давление становится меньше НРД новой форсунки на 15…20% и стабилизируется (за 5 лет нормальной эксплуатации изменяется не более чем на 5%).

    3. Рабочее давление Рф форсунки после ее приработки. Это изменяющееся во время работы двигателя давление во внутренней полости форсунки от минимального рабочего давления Рф min (МРД) до максимального значения рабочего давления Ps max(РДС)в механической системе впрыска.

    4. Давление отсечки форсунки Р0 (ДОТ). Это давление, ниже которого форсунка надежно закрыта иногда называется давлением слива). Давление отсечки всегда меньше Рф min на 1,0…1,5 кг/см2, но несколько больше остаточного давления Рост в системе впрыска сразу после выключения двигателя.

    5. Производительность Пф форсунки. Это количество бензина, которое распыляется через постоянно открытую форсунку за единицу времени при определенном рабочем давлении Рф в полости форсунки. Обычно Пф закрытой форсунки задается для двух крайних значений рабочего давления: Рф min и Ps max. Этим двум значениям соответствуют два режима работы двигателя: Рф m,n — холостому ходу, Ps m8K — полной нагрузке. Производительность Пф задается в см3/мин или в гр/с. Например, для закрытых форсунок 5-ти цилиндрового ДВС автомобиля AUDI-1O0 (2,2 л, 140 л/с) показатели производительности соответственно равны 30 и 90 см3/мин (при работе в системе «K-Jetronic»).

    Вышедшие из строя форсунки закрытого типа ремонту не подлежат, но, как и любые другие, могут быть «промыты» в составе системы впрыска на работающем двигателе.

    ЭЛЕКТРОМАГНИТНЫЕ ФОРСУНКИ

    Электромагнитные форсунки применяются в современных системах впрыска бензина в качестве клапанных рабочих и пусковых форсунок (для систем распределенного по цилиндрам впрыска с электронным управлением), а также в качестве центральных форсунок впрыска (в системах питания с моновпрыском). Центральная форсунка наиболее распространенной конструкции для систем впрыска бензина группы «Mono».

    Современные ЭМ-форсунки способны надежно срабатывать со скважностью* S = 0,5 и при этом устойчиво (управляемо) удерживать открытое состояние в течение 2…2,5 мс. Разброс этого параметра в конкретном типоразмерном ряде форсунок не более ±5%. Такой быстроте срабатывания ЭМ-форсунки отвечает частота возвратно-поступательного движения подвижного стержня электромагнита форсунки в 200…250 с-1. Это является пределом возможного для данного типа электроуправляемых форсунок.

    При применении ЭМ-форсунок в качестве клапанных рабочее давление Ps в системе впрыска может быть понижено с 6,5 бар (в механических системах) до 4,8…5 бар, что повышает надежность работы электробензонасоса и понижает вероятность протечек топлива в уплотнительных соединениях бензома-гистралей.

    При электронном управлении форсунками точность дозирования впрыснутого бензина значительно повышается. Это становится возможным потому, что давление внутри ЭМ-форсунки поддерживается постоянным, и количество впрыснутого топлива определяется только временем открытого состояния форсунки.

    ОСНОВНЫМИ ПАРАМЕТРАМИ ЭМ-ФОРСУНКИ ЯВЛЯЮТСЯ:

    1. Постоянное рабочее давление в полости форсунки (РДФ), равное рабочему давлению Ps системы, выраженное в бар.

    2. Производительность форсунки (пропускная СПОСОбнОСТЬ В ОТКРЫТОМ СОСТОЯНИИ — В СМ3/МИН или в г/с при заданном Ps РДС).

    3. Минимальное напряжение надежного срабатывания форсунки (постоянное напряжение в вольтах).

    4. Минимальное время цикловой подачи топлива (минимальное надежно управляемое время продолжительности открытого состояния форсунки — в мс).

    5. Внутреннее омическое сопротивление Нф форсунки (сопротивление катушки соленоида — в омах).

    На корпусе форсунки набивается цифровой код, по которому в справочном каталоге можно определить все вышеперечисленные параметры. На корпусе выбивается также торговый знак или название фирмы-изготовителя.

    О внутреннем омическом сопротивлении Нф форсунки следует сказать отдельно. Если катушка соленоида намотана медным проводом, то получить величину Нф более 2…3 Ом невозможно (накладывается требование минимизации индуктивности Ls катушки). В таком случае для ограничения величины рабочего тока 1ф форсунки последовательно с катушкой соленоида включают дополнительный резистор. Применяют также обмоточный провод с высоким удельным сопротивлением (для катушки соленоида), что исключает необходимость установки дополнительных резисторов. Но в любом случае общий средний ток управления сразу всеми форсунками (или группой форсунок) впрыска на двигателе не должен превышать значения 3…5 А.

    В некоторых случаях на многоцилиндровых двигателях применяют «групповое» управление форсунками. Это когда форсунки объединены в группы, а каждая группа управляется от отдельного электронного блока. Но наиболее эффективной является система впрыска бензина, в которой каждая рабочая клапанная ЭМ-форсунка управляется независимо от других (последовательный синхронизированный распределенный по цилиндрам импульсный впрыск бензина с управлением от многоканального ЭБУ впрыском).

    По типу запирающего клапана ЭМ-форсунки, как и гидромеханические, подразделяют на три вида:

    Форсунки со сферическим профилем запорного элемента:

    Форсунки с штифтовым клапаном (с конусным или игольчатым запорным стержнем):

    Форсунки с дисковым клапаном (с плоским или тарельчатым запорным элементом).

    Выпускаются форсунки с внутренним электрическим сопротивлением 2,4 Ом: 12,5 Ом; 16 Ом. Малое сопротивление связано с применением обмоточного провода из меди и с необходимостью иметь малую величину индуктивности L соленоида, которая прямо зависит от числа витков Wc обмотки соленоида.

    Низкое сопротивление форсунки увеличивают дополнительным сопротивлением в 6…8 Ом, что уменьшает потрябляемый ток. Обмотки высокоомной форсунки выполнены из провода с большим удельным сопротивлением (например, из латуни), что позволяет иметь малое L и большое R.

    По производительности П впрыска форсунки подбирают по типам и мощности тех двигателей, на которые эти форсунки устанавливаются. Производительность форсунки определяется под рабочим давлением системы, как количество Кв бензина, прошедшего через форсунку за единицу времени t, если она постоянно открыта.

    ПУСКОВЫЕ ЭЛЕКТРОМАГНИТНЫЕ ФОРСУНКИ

    К электромагнитным форсункам относятся и пусковые гидроклапаны с электромагнитным управлением, которые по принципу действия мало чем отличаются от ЭМ-форсунок. Именно поэтому пусковые гидроклапаны чаще называют пусковыми форсунками.

    Основное назначение пусковой форсунки (ПС-форсунки) — это работа в механической системе непрерывного распределенного впрыска во время запуска холодного двигателя. Иногда ПС-форсунка используется как форсажное устройство, наподобие ускоритвльного насоса в карбюраторе, или как устройство для запуска перегретого двигателя с турбонаддувом. Пусковая форсунка применяется и в некоторых системах впрыска группы «L». В любом случае ПС-форсунка работает непосредственно от бортсети автомобиля, а в систему электронного управления двигателем включается опосредовано через специальное электронное реле управления.

    К ПС-форсункам требования высокой скорости срабатывания не предъявляются, что значительно упрощает конструктивное исполнение ее составных компонентов. Так, масса якоря электромагнита, который (якорь) одновременно является и запирающим элементом клапана форсунки, число витков катушки электромагнита, сечение распылительного сопла, упругость возвратной пружины — все это заметно увеличено по сравнению с рабочей клапанной ЭМ-форсункой.

    ФОРСУНКА ЗАКРЫТОГО ТИПА С ПЛУНЖЕРНЫМ НАСОСОМ

    Ведутся исследования в направлении поиска принципиально новых способов впрыска бензина с помощью форсунок. Испытаны так называемые магнитоэлектрические форсунки, которые отличаются высоким быстродействием (0,5 мс), так как работают с принудительным высокочастотным (до 1000 с»1) переключением полярности магнитного поля в катушке соленоида.

    Перспективными считаются также форсунки закрытого типа с дополнительным электромагнитным управлением (электрогидравлические).

    В системах впрыска бензина группы «Д» (впрыск в камеру сгорания) используется насос-форсунка закрытого типа с плунжерным насосом высокого давления, который приводится в действие от кулачка распредвала.

    Насос-форсунка оснащен сливным каналом с быстродействующим электрогидравлическим клапаном. Комбинация — плунжерный насос, закрытая гидромеханическая форсунка, электроуправляемый от электронной автоматики сливной канал — дает возможность реализовать так называемый «послойный впрыск бензина» непосредственно в камеру сгорания ДВС. Это обеспечивает значительную экономию топлива за счет работы двигателя на очень бедных ТВ-смесях (а = 2,0), а также повышает ряд его эксплуатационных показателей.

    При послойном впрыске цикловая подача бензина непрерывно дифференцируется по времени посредством управления давлением в рабочей полости насос-форсунки (под плунжером). Давление регулируется электроуправляемым гидроклапаном в сливном канале. Суть послойного впрыска топлива состоит в его подаче отдельными, строго дозированными порциями. Получается так: за один цикл впрыска бензин подается прямо в цилиндр не сплошной однородной струей, а несколькими частями, каждая из которых образует «свой» коэффициент избытка воздуха а.

    В объеме цилиндра образуется «послойный пирог» из ТВ-смеси разной концентрации. Преимущество послойного впрыска бензина состоит в том, что в первый момент воспламенения в зону центрального электрода свечи зажигания подается нормальная (стехиометрическая) ТВ-смесь с а = 1, которая легко возгорается. Далее процесс горения топлива в очень бедной ТВ-смеси (а = 2.0) поддерживается за счет «открытого огня», образовавшегося в первый момент воспламенения. Однако система впрыска бензина с насос-форсунками обладает двумя существенными недостатками: она содержит дорогостоящие и очень сложные механические устройства, а также способствует появлению значительных количеств оксидов азота (N0X) в выхлопных отработавших газах двигателя, бороться с которыми крайне сложно. Тем не менее система выпускается фирмой TOYOTA для двигателей TD4 легковых автомобилей.

    В этой статье мы постараемся разобраться, что такое, для чего нужен и где находится инжектор. Инжектор – однокоренное слово со словом инъекция, а инъекция – это впрыск. Хотя инжектор мало похож на шприц, но он тоже впрыскивает топливо в цилиндры двигателя. Собственно говоря, инжектор – форсунка, которая разбрызгивает топливо мелкими каплями для поступления в цилиндры смеси воздуха и паров бензина. Вы скажете, что делает все так же. Так же, но не совсем.

    Жиклер карбюратора работает практически как , разбрызгивая в его камере бензин. Но бензин засасывается в карбюратор с помощью поршня двигателя, что отбирает около 10% его мощности. Плюс ко всему, отрегулировать карбюратор до идеального состояния почти невозможно: он то переливает топливо, что двигатель «захлебывается» и коптит, а часть так и не сгорает, то не доливает, и мотор работает с провалами и не тянет.

    Бензин закачивается в инжектор с помощью специального электронасоса, а смешивание паров бензина и воздуха происходит в самой камере сгорания цилиндра. Количество топлива четко порционно, и зависит оно от необходимого именно в данный момент количества для оптимальной тяги.

    Где же находится инжектор:

    В обычных случаях инжектор устанавливают вместо карбюратора, а точнее – вообще на его место. В качестве инжектора используют лишь одну форсунку, которая «обслуживает» все цилиндры, а впрыск топлива будет во впускной коллектор, так называемый моновпрыск. Перед карбюраторной схемой преимущество здесь только одно: двигатель не расходует мощность на всасывание топлива через жиклер карбюратора.

    Система многоточечного или распределенного впрыска производится также во впускной коллектор. Благодаря распределенному впрыску лучше дозируется топливо, которое поступает к каждому цилиндру. Но все же самые лучшие результаты дает только прямой впрыск прямо в камеру сгорания цилиндра, так же, как в .

    Главная » Современные модели » Форсунки в автомобиле: где находятся и для чего нужны? Где находится инжектор Сколько форсунок в двигателе

    Сколько форсунок в двигателе

    Форсунки для дизельных двигателей – это детали топливной аппаратуры, которые наиболее подвержены износу. Считаются самыми простыми в обслуживании и проведении диагностики в условиях сервисных центров. От того, насколько эффективно работают форсунки, зависит качество сгорания топлива в цилиндрах двигателя, его запуск, динамика разгона автомобиля, экономичность и количество вредных выбросов.

    Форсунки для дизельных двигателей – что это?

    В зависимости от типа распылителей и топливной системы максимальное давление форсунок дизельных двигателей в распылителе в момент впрыска составляет порядка 200 МПа, а время – от 1 до 2 миллисекунд. От качества впрыска зависит уровень шума двигателя, количество выбросов в атмосферу сажи, окислов азота и углеводорода.

    Современные модели различаются по форме корпуса, размеру распылителей, а также по способу управления. Отличие различных типов форсунок состоит в использовании различных систем впрыска и видов распылителей, которые бывают штифтовыми и дырчатыми. Штифтовые применяют в двигателях с форкамерной системой зажигания, дырчатые устанавливаются на дизелях с непосредственным впрыском топлива.

    Принцип работы форсунки дизельного двигателя – кратко о сложном

    Основное назначение таких деталей заключается в дозировании и распылении топлива, а также герметичной изоляции камеры сгорания. В результате исследований были разработаны насосы-форсунки, которые устанавливаются в каждый цилиндр по отдельности. Принцип работы форсунки дизельного двигателя нового типа заключается в том, что она функционирует от кулачка распределительного вала через толкатель. Подача и слив топлива осуществляется через специальные каналы в головке блока. Дозирование топлива происходит через блок управления, который подает сигналы на запорные электромагнитные клапаны.

    Работает насос-форсунка в импульсном режиме, что позволяет перед основным впрыском произвести предварительную подачу топлива. В результате чего значительно смягчается работа двигателя и снижается уровень токсичных выбросов.

    Промывка форсунок дизельного двигателя – способы реализации

    Загрязнение этого элемента ведет к нарушению распыления топлива и приводит к неправильному образованию воздушно-топливной смеси. В идеале пульверизация должна быть максимально равномерной. Основной источник загрязнения – содержащиеся в топливе смолы. Промывка форсунок дизельного двигателя может устранить все нарушения подачи топлива в цилиндры.

    Процесс очистки форсунок предусматривает удаление различных загрязнений в топливных каналах. В настоящее время применяется несколько способов:

    • чистка форсунок дизельных двигателей с помощью ультразвука;
    • промывка форсунок топливом с добавлением специальных присадок;
    • промывка с использованием специальных жидкостей на стендах;
    • промывка вручную.
    • Автор: Михаил
    • Распечатать

    (10 голосов, среднее: 2.9 из 5)

    Поделитесь с друзьями!

    Тысячу раз в минуту – Автоцентр.ua

    Автоцентр Новости Концепт Устройство форсунок дизельных двигателей: Тысячу раз в минуту

    Оставьте ваши контактные данные:

    Уточните удобное время для звонка:

    • День/дата
    • Сегодня
    • Завтра
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 10
    • 20
    • 30
    • 40
    • 50

    Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

    Оставьте ваши контактные данные:

    Уточните удобное время для звонка:

    • 8
    • 9
    • 10
    • 11
    • 12

    • 10
    • 20
    • 30
    • 40

    Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

    Оставьте ваши контактные данные:

    • Сначала выберите дилера
    • Сначала выберите марку

    Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

    Оставьте ваши контактные данные:

    • Сначала выберите дилера
    • Сначала выберите марку

    Уточните удобное время для тест-драйва:

    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 00
    • 10
    • 20
    • 30
    • 40
    • 50

    Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

    Оберіть мовну версію сайту. За замовчуванням autocentre.ua відображається українською мовою.

    Слава Україні! Героям слава!
    Ви будете перенаправлені на українську версію сайту через 10 секунд

    Сколько топливных форсунок в автомобиле?

    Топливные форсунки играют жизненно важную роль в функционировании двигателя автомобиля, поэтому важно содержать их в чистоте и поддерживать в хорошем состоянии. Но сколько топливных форсунок у двигателя? Мы провели исследование, чтобы дать вам ответ.

    Типичный двигатель имеет 4, 6 или 8 цилиндров, и каждый из этих цилиндров имеет одну форсунку. Это означает, что всего двигатель будет иметь 4, 6 или 8 форсунок. С 1990 года каждый новый автомобиль оснащается топливными форсунками, так как это более точный способ подачи топлива в двигатель.

    Создание топливных форсунок изменило способ создания автомобилей и позволило сделать двигатель более эффективным. В этой статье мы более подробно рассмотрим, как работают топливные форсунки и почему они устанавливаются по одной на каждый цилиндр двигателя. Кроме того, мы ответим на другие часто задаваемые вопросы о топливных форсунках, так что продолжайте читать!

    Прежде чем вы продолжите чтение, позвольте нам сказать, что мы надеемся, что ссылки здесь будут вам полезны. Если вы купите что-то по ссылке на этой странице, мы можем получить комиссию, так что спасибо!

    Есть ли топливная форсунка для каждого цилиндра?

    Да, на каждый цилиндр двигателя приходится одна топливная форсунка. Форсунка отвечает за впрыскивание топливного тумана под высоким давлением в цилиндр в нужное время для смешивания с воздухом и сгорания. Топливная форсунка распыляет туман в нижнюю часть впускного коллектора за впускным клапаном.

    Этим точным временем управляет компьютер двигателя, который сообщает форсунке, когда открывать и закрывать. Сама форсунка представляет собой небольшой электромеханический клапан, который открывается и закрывается очень быстро, пропуская небольшое количество топлива каждый раз, когда он открывается.

    Это связано с тем, что топливно-воздушная смесь в цилиндре максимально приближена к стехиометрической (идеально сбалансированной). Эта идеальная смесь приводит к более полному сгоранию топлива, что приводит к повышению эффективности двигателя и снижению выбросов.

    В последнее время производители приспособились к прямому впрыску топлива, при котором топливо впрыскивается непосредственно в цилиндр, а не во впускной коллектор. Это приводит к еще более точной смеси и может привести к улучшению работы двигателя.

    Однако форсунки прямого действия дороже из-за высокого расхода топлива.

    Большинство двигателей имеют непосредственный впрыск?

    По состоянию на 2019 год 51% автомобилей в США имеют систему прямого впрыска, и ожидается, что эта цифра будет расти. Кроме того, некоторые автопроизводители, такие как Mercedes-Benz, используют 100% непосредственный впрыск. Поэтому предполагается, что к 2025 году почти все автомобили будут иметь систему прямого впрыска.

    Причина в том, что это гораздо более эффективная система. Это позволяет лучше распылять топливо, что означает меньшее количество несгоревшего топлива в цилиндрах и, следовательно, меньшее загрязнение. Это также обеспечивает более высокую степень сжатия, что приводит к увеличению мощности двигателя.

    Как часто нужно чистить топливные форсунки?

    Обычно рекомендуется очищать топливные форсунки каждые 30 000 миль или около того. Однако это число может варьироваться в зависимости от типа вашего автомобиля и от того, как часто вы им пользуетесь.

    Например, если вы часто ездите в пробках, вам может потребоваться более частая чистка топливных форсунок. То же самое, если вы часто используете некачественное топливо.

    Вам также может потребоваться более частая чистка топливных форсунок, если вы заметили, что ваш двигатель работает неровнее, чем обычно, или если вы набираете меньше миль на галлон топлива.

    Если вы не знаете, как часто следует очищать топливные форсунки, обратитесь к дилеру или механику.

    Подробнее: Шумят ли неисправные топливные форсунки?

    Все ли топливные форсунки одинаковы?

    Нет, все форсунки разные. Существует четыре различных типа топливных форсунок, каждый из которых имеет свои преимущества и недостатки.

    Три наиболее распространенных типа топливных форсунок: одноточечные или дроссельные, портовые или многоточечные, последовательные топливные форсунки и топливные форсунки с непосредственным впрыском. Давайте посмотрим на каждый ниже:

    Одноточечный впрыск или в корпус дроссельной заслонки

    Одноточечные топливные форсунки были созданы для замены карбюраторов с одной или двумя распылительными форсунками, которые распыляют топливо в корпус дроссельной заслонки. Основные моменты этого нового изобретения заключались в том, что его было проще обслуживать и он был дешевле, чем карбюраторы.

    Распределительный или многоточечный впрыск

    Позже форсунки с распределенным впрыском стали производиться с форсункой, которая впрыскивала топливо в каждый цилиндр за пределами впускного отверстия, отсюда и название «распределенный впрыск». Портовые форсунки более эффективны, чем одноточечные форсунки, поскольку они полностью втягивают пары топлива в цилиндр.

    Это также предотвратило скопление паров топлива во впускном коллекторе.

    Последовательные топливные форсунки

    Последовательные топливные форсунки вывели портовые форсунки на новый уровень эффективности. Портовые форсунки будут распылять пары топлива одновременно, что может привести к остановке топлива в порту.

    Инженеры заметили, что это проблема, и сделали последовательные топливные форсунки, чтобы каждая форсунка распыляла пары топлива независимо. Это небольшое изменение в технике повысило эффективность и уменьшило выбросы.

    Непосредственный впрыск

    Непосредственный впрыск — это то место, где сейчас находится технология, и она становится все более популярной среди автопроизводителей. Сначала технология прямого впрыска обычно использовалась в дизельных двигателях, но, как упоминалось ранее, автопроизводители также используют ее в своих газовых двигателях.

    Причина в том, что топливо впрыскивается непосредственно в камеры сгорания, что позволяет точно дозировать топливо. Это приводит к еще меньшему количеству выбросов и большей мощности.

    Есть ли проблемы с двигателями с непосредственным впрыском?

    Как мы уже говорили, непосредственный впрыск или DI имеет несколько преимуществ и становится популярным для автопроизводителей. Тем не менее, обязательно будет несколько проблем с чем-то новым.

    Основной проблемой двигателей с прямым впрыском являются отложения топлива или нагар на форсунках и впускных клапанах. Эти отложения могут вызвать пропуски зажигания, потерю мощности и повышенный расход топлива.

    Хорошей новостью является то, что эта проблема не является уникальной для двигателей с прямым впрыском и может быть вызвана рядом различных факторов, таких как низкокачественное топливо, длительные периоды работы на холостом ходу или короткие поездки.

    Лучший способ избежать этих проблем — использовать более качественное топливо и вовремя менять масло.

    Наконец, важно вовремя менять свечи зажигания. Своевременная замена свечей зажигания уменьшит количество неиспользованного топлива, попадающего в камеры сгорания.

    Что лучше, MPI или GDI?

    Когда речь идет о крутящем моменте и ускорении, GDI или непосредственном впрыске бензина, двигатели имеют явное преимущество. Основная причина связана с тем, что топливо распыляется непосредственно в камеру сгорания, что позволяет точно дозировать топливо.

    Это приводит к меньшему количеству выбросов и большей мощности. Хотя двигатели MPI или двигатели с многоточечным впрыском менее дороги в производстве, они просто не могут сравниться по производительности с двигателями GDI. Кроме того, двигатели GDI потребляют меньше топлива, чем обычные двигатели на крейсерских скоростях.

    Вот почему большинство автопроизводителей переходят на использование двигателей GDI в своих автомобилях. Итак, если вы ищете мощный двигатель, который может быстро доставить вас из пункта А в пункт Б, то двигатель GDI — это то, что вам нужно, поскольку с двигателем GDI вы можете увеличить крутящий момент на 10 %.

    Одним из конкретных преимуществ MPI по сравнению с GDI является то, что он лучше запускает холодный двигатель. Топливо, поступающее из порта, обеспечивает лучшее распыление топлива в цилиндре, что обеспечивает лучший холодный запуск, особенно в автомобилях с гибким топливом.

    Кроме того, MPI не имеет большой проблемы с нагаром на впускных клапанах. Вполне вероятно, что со временем инженеры решат эту проблему с двигателями GDI, что сделает их предпочтительным выбором для большего числа автопроизводителей.

    Лучше заменить сразу все топливные форсунки?

    Обычно рекомендуется заменять все топливные форсунки одновременно. Основная причина заключается в том, что если одна из ваших форсунок выходит из строя, вполне вероятно, что и остальные не сильно отстают.

    Замена сразу всех форсунок сэкономит вам деньги в долгосрочной перспективе, так как вам не придется платить за работу дважды. Также рекомендуется одновременно заменить топливный фильтр.

    Если вы заметили какие-либо из следующих симптомов, вероятно, вам необходимо заменить топливные форсунки:

    • У вашего двигателя пропуски зажигания.
    • Вы испытываете потерю энергии.
    • Ваш двигатель работает с перебоями.
    • Вы заметили увеличение расхода топлива.

    Подробнее: Нужно ли заменять топливные форсунки?

    Если вы испытываете какие-либо из этих симптомов, лучше всего отвезти автомобиль к механику, чтобы он диагностировал проблему.

    В заключение

    Топливные форсунки являются неотъемлемой частью двигателя вашего автомобиля и отвечают за подачу топлива в камеру сгорания. Существует два основных типа топливных форсунок: MPI и GDI. Оба двигателя изменили принцип работы и имеют свои преимущества, но GDI, похоже, никуда не денется.

    Дизельные топливные системы и форсунки

    Ни для кого из моторостроителей и заядлых энтузиастов не секрет, что воздух и топливо являются двумя очень важными факторами производительности, особенно в современном дизельном мире. Недавно я узнал, что вы на самом деле не знаете, насколько важна такая вещь, как ваша топливная система, пока не сядете и не поговорите с таким парнем, как Лавон Миллер из Firepunk Diesel. Я недавно сделал именно это и изучил все, что связано с топливными системами и комбинациями форсунок, поэтому я мог передать эту замечательную информацию всем вам, фанатикам дизельного топлива.

    Секрет того, как выжать из двигателя все возможное, кроется в топливной системе. Это сердце дизеля. Делайте больше воздуха, нужно больше топлива, и вы производите больше энергии. Лавон и Файрпанк Дизель играют в эту высокопроизводительную игру с 2005 года, когда для них она начиналась как хобби. В 2009 году это стало бизнесом, и сегодня Firepunk является синонимом передовых дизельных инноваций и помощи другим в достижении их целей и мечтаний внутри грузовика.

    Firepunk Diesel обладает многими возможностями, но топливные системы и данные о том, что работает, а что нет, стали тем, чем овладели Лавон и его команда. Прежде чем мы углубимся в подробности, есть важная информация, которую должен знать каждый.

    «Хорошее, чистое топливо очень важно для системы Common Rail, — говорит Миллер. «Все, что нужно, это небольшой кусочек грязи размером в два микрона, чтобы начать вызывать повреждение внутреннего управляющего стержня корпуса форсунки. Многие ребята исходят из менталитета олдскульных P-насосов, когда можно было залить растительное масло в топливный бак, и он заработает. Новые системы Common Rail намного более суетливы. Топливо хорошего качества, хорошая фильтрация и хорошая смазывающая способность являются ключевыми факторами».

    Обработка топлива и присадки могут помочь сохранить ваше топливо в идеальном состоянии, но когда речь идет о том, чтобы ваша топливная система работала с максимальной производительностью, все зависит от лучшего давления топлива, лучших схем распыления, распыления топлива и выделения тепла. Вот где создается сила.

    При разборе типичной дизельной топливной системы на самом деле есть три основных компонента: форсунка, топливный насос высокого давления или CP3 и подкачивающий насос. Штатная топливная система в 325-сильном дизельном двигателе с турбонаддувом на вторичном рынке может выдать 550 л.с. за счет максимального использования штатной топливной системы. Увеличивая размер инжектора, вы увеличиваете расход через сопло.

    «Многие люди переходят от стандартных инжекторов к 60 %, 100 %, 200 %, вплоть до 400 % в зависимости от того, какова ваша конечная мощность», — говорит Миллер. «Многие ребята из UCC работают на 400–600 % больше, чем форсунки. Очевидно, вам нужен насос CP3, который может его поддерживать. Насос CP3, в зависимости от размера вашей форсунки и ваших оборотов, будет зависеть от того, какой насос вам нужен.

    «Это целая банка червей, когда вы начинаете говорить об этом, потому что мы обнаруживаем большую разницу между тем, когда вы запускаете большой инжектор, скажем, на 500%, и тогда вы сохраняете ширину импульса инжектора короткой. У CP3 больше времени для восстановления давления в рампе между циклами форсунки от одной форсунки к другой. Тот же CP3 может поддерживать большую мощность с форсункой большего размера, чем с форсункой меньшего размера и с увеличенной шириной импульса форсунки. Следующая форсунка срабатывает до того, как другая отключается, и CP3 гораздо труднее восстановить давление в рампе».

    Шло время, форсунки становились больше, ширина импульса форсунки и настройка оставались короче, а дизельная промышленность выяснила, как сделать двигатели максимально эффективными, чтобы можно было получить больше лошадиных сил при том же количестве топлива. как и прежде — просто добавьте закись азота или увеличьте соотношение воздух/топливо. Дизельные двигатели могут генерировать значительно больше мощности, если наклонить их наружу.

    «Что мы делали с нашим мотором из заготовки, когда мы были на динамометрическом стенде двигателя, так это мы установили двигатель на 300 миллиграммов топлива», — говорит Миллер. «Мы сделали 1,390 лошадиных сил при 300 миллиграммах топлива с 91-мм турбокомпрессором. Затем мы начали добавлять закись азота без замены топлива, что сродни добавлению воздуха, поэтому изменилось соотношение воздух/топливо. Мы начали с соотношения воздух/топливо примерно 17:1, затем добавили комплект закиси азота и набрали 100 лошадиных сил. В итоге мы добавили закись азота, пока не достигли 1970 лошадиных сил с тем же количеством топлива. Все, что мы сделали, это увеличили соотношение воздух/топливо с 17:1 до 30:1. Те же самые 300 миллиграммов топлива, которые выдавала топливная система уличного грузовика, могли заставить вас думать, что насос и форсунки работают на пределе 1,39.0 лошадиных сил. Но если вы добавите правильную настройку воздух/азот, те же самые 300 миллиграммов топлива будут поддерживать более 1900 лошадиных сил».

    Firepunk повторил тот же тест на полностью серийном грузовике с установленным на вторичном рынке турбонаддувом и максимально загрузил топливную систему. Он составлял 549 лошадиных сил. Затем они добавляли закись азота и еще больше закиси азота, пока он не достиг 905 лошадиных сил — все еще используя стандартный инжектор, стандартный CP3 и стоковый подъемный насос.

    «Вы используете то же количество топлива, но расход топлива намного эффективнее», — говорит он. «Вы на самом деле сжигаете это топливо. Закись азота просто следит за тем, чтобы там было много воздуха, богатого кислородом, и он сожжет там все до последней капли топлива».

    Лавон признает, что это не всегда безопасно на серийном грузовике. В стандартной топливной системе у вас есть ширина импульса форсунки, растянутая до 3000 микросекунд, поэтому время включения форсунки довольно велико, и у вас есть огонь на вашем поршне в течение довольно небольшого количества этого времени. Пока обороты вашего двигателя не слишком высоки — ниже 4000 об/мин — вы, вероятно, сделаете это для пары заездов. Но если вы доведете эту высокую ширину импульса форсунки до 4500-5000 об/мин, вы почти наверняка расплавите поршень.

    «По этой причине, если целью было 900 лошадиных сил, мы, как правило, шли бы, по крайней мере, на 100%-ный перегруз форсунки, чтобы сократить длительность импульса форсунки до 1800-1900 микросекунд», — говорит он. «Это будет ближе к ширине импульса стандартной форсунки, и вы получите количество топлива, подаваемое за то же самое время. Вы получаете больше топлива перед верхней мертвой точкой, и температура днища вашего поршня не будет такой высокой, потому что вы не распыляете топливо под высоким давлением на поршень в течение длительного времени каждый раз, когда срабатывает форсунка».

    Конечно, так же, как и количество лошадиных сил, люди зацикливаются на размерах форсунок, но насос CP3 также является важным компонентом, который необходимо учитывать.

    «Заводской CP3 имеет ход 8,2 мм», — говорит Миллер. «Обычные CP3 имеют ход 10 мм, 12 мм и 14 мм. Многие производители двигателей высокого давления CP3 не желают увеличивать диаметр цилиндра CP3, потому что компания Bosch проделала такую ​​прекрасную работу, сделав зазор между отверстием и поршнем настолько узким, что мир послепродажного обслуживания практически не может с ним сравниться. . Вот почему на вторичном рынке вы видите, как Exergy, S&S и авторитетные компании по производству топливных систем просто модифицируют кулачок и увеличивают ход поршня в CP3, чтобы увеличить объем топлива».

    Если вы хотите модернизировать свою топливную систему, Лавон говорит, что лучше сначала выбрать инжектор.

    «В девяти случаях из 10 инжектор идет первым», — говорит он. «Вы всегда можете установить инжектор большего размера, а с помощью доступной индивидуальной настройки вы можете настроить инжектор обратно, пока ваш стандартный CP3 не сможет идти в ногу со временем. Вы все равно увидите прибыль. Стандартный CP3 может поддерживать только 550 лошадиных сил топлива со стандартным инжектором, пока он не будет исчерпан. Что ж, теперь вы переходите на 100% перегрузку форсунки и сокращаете ширину импульса форсунки с 3000 микросекунд до 2000 микросекунд, и у CP3 есть больше времени для восстановления давления в рампе между ходами форсунки. Тот же самый CP3, мощность которого была увеличена до 550 л.с., будет поддерживать расход топлива мощностью 650 л.с. только за счет сокращения ширины импульса форсунки.

    «Поэтому обычно у нас есть ребята, которые сначала делают инжектор и покупают инжектор такого размера, который соответствует их конечной цели по максимальной мощности. Мы меняем размер форсунки только в зависимости от целей пиковой мощности. Как только они смогут финансово оправиться от этого, тогда они смогут накачать ситуацию. Оттуда вы можете перенастроить его и увеличить оставшееся количество топлива и фактически получить количество топлива, которое они хотят, в конце концов, если они не могут позволить себе делать и то, и другое одновременно».

    Как уже упоминалось, всего несколько лет назад, когда форсунки и насосы не были так хороши, как сегодня, люди думали, что несколько насосов CP3 являются ответом на увеличение количества топлива. В 2016 году Лавон и Файрпанк использовали три CP3. Сегодня технология CP3 стала намного лучше.

    «У таких компаний, как Exergy, есть 14-миллиметровый гоночный насос, а два гоночных насоса при 5500 об/мин будут подавать достаточно топлива для 3000 лошадиных сил», — говорит он. «Количество необходимых CP3 зависит от ваших целей, но обычно мы учитываем общее количество доставленного топлива в миллиграммах. Мы вычисляем, сколько топлива нам нужно на одну лошадиную силу, а затем рассчитываем, исходя из желания сделать 2500 лошадиных сил, вам понадобятся два насоса. Мы выработали более 2000 лошадиных сил на одном 14-миллиметровом CP3 со 100-процентными форсунками и тремя ступенями закиси азота».

    Очевидно, что не каждый владелец дизельного грузовика может иметь или обязательно хочет развивать мощность более 2000 лошадиных сил. По этой причине у Firepunk есть несколько рекомендуемых уровней топливной системы для клиентов уличных грузовиков для всех гоночных настроек.

    «Наиболее распространенные сборки будут в диапазоне 800-900 лошадиных сил, потому что это примерно столько, сколько вы можете получить, не работая над нижней частью», — отмечает Миллер. «Телефон звонит чаще всего у ребят, которые не хотят тянуть мотор и ставить в него тяги. Они хотят иметь возможность использовать болтовые крепления и получать столько мощности, сколько хотят, без необходимости копаться в двигателе. Очень распространенная установка — это 12-миллиметровый поршневой насос, инжектор на 100% и турбонаддув S472, чтобы получить уличный грузовик мощностью 850 лошадиных сил.

    «Следующим шагом будут ребята, которые возьмут стандартный мотор и вытащат из него поршни и шатуны для стержней-заготовок, а затем вставят стандартные поршни обратно. помпа 14мм. Они могут работать с набором составных турбин — 468 вместо 488 составных — и иметь уличный грузовик мощностью 1200 лошадиных сил. Это будет вторая по распространенности платформа для уличных грузовиков, которую мы видим.

    «Помимо этого, очень распространенная установка, которую мы устанавливали на многие гоночные грузовики, — это одиночный 14-миллиметровый гоночный насос с форсунками на 400% больше. Вы можете либо использовать большой набор компаундов, либо использовать один турбо с парой комплектов закиси азота. Эта комбинация может довольно стабильно выдавать от 1350 до 1800 лошадиных сил, в зависимости от того, какая у вас воздушная установка».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *