Устройство кондиционера автомобиля
В современных автомобилях микроклимат в салоне обеспечивается тремя системами – вентиляции, обогрева и кондиционирования. И конструктивно самой сложной из них является кондиционер, в задачу которого входит охлаждение воздуха в салоне летом. Несмотря на это система кондиционирования достаточно распространена и устанавливается на многие авто даже бюджетного сегмента.
Принцип работы кондиционера автомобиля построен на свойстве определенных веществ поглощать и отдавать тепло при смене агрегатного состояния. Этот же принцип используется в бытовых холодильниках и стационарных кондиционерах. Поэтому все перечисленные устройства конструктивно очень схожи и состоят из одних и тех же составных элементов. Но автомобильный кондиционер отличается более компактными размерами и типом привода одного из основных узлов – компрессора.
Составные элементы
В целом, устройство автокондиционера включает в себя:
- Компрессор;
- Магистрали высокого и низкого давления;
- Конденсатор;
- Осушитель;
- Терморегулирующий вентиль или дроссель;
- Испаритель;
- Электрооборудование (датчики температуры, электровентиляторы, электромагнитная муфта и т.д.).
Все перечисленные элементы соединены между собой магистралями, поэтому система закольцована и герметична. Основным рабочим элементом в системе кондиционирования является хладагент (фреон) – вещество, обеспечивающее поглощение и отдачу тепла.
Компрессор и его привод
Компрессор – узел, осуществляющий нагнетание хладагента. Он создает давление и обеспечивает движение фреона далее по системе. На автотранспорте применяется несколько видов компрессоров, отличающихся по конструкции. Наибольшее распространение получили компрессоры роторно-лопастного и поршневого типов, хотя встречаются и более интересные конструкции, к примеру, узел, работающий по принципу Ванкеля.
Устройство поршневого компрессора
Компрессор является своеобразным разделителем, который всю систему делит на контуры высокого и низкого давлений. Контур высокого давления включает в себя все элементы до испарителя, а к контуру низкого давления относится лишь магистраль, соединяющая испаритель с компрессором.
Компрессоры, используемые на автомобилях, обычно механические и в действие они приводятся от коленчатого вала посредством ременной передачи. Но поскольку, кондиционер используется не постоянно, то конструкция привода оснащена механизмом отключения компрессора. Обычно в качестве такого механизма используется электромагнитная муфта. Реже, но тоже используется электропривод компрессора – узел работает за счет электродвигателя. Такой привод используется на электромобилях.
Еще один тип привода – комбинированный, используется на некоторых гибридных моделях. На таких авто компрессор может работать как от электродвигателя (во время движения на аккумуляторах), так и от коленчатого вала (при задействовании ДВС).
Магистрали
Магистрали высокого давления рассчитаны на значительные нагрузки и температурное воздействие. При нагнетании фреона компрессором, давление хладагента существенно возрастает – до 250-270 кПа. При этом сжатие сопровождается сильным нагревом вещества (до 150 град). Поэтому к магистралям высокого давления выдвигаются серьезные эксплуатационные требования.
Магистрали низкого давления – обычные трубки, поскольку после испарителя давление хладагента сильно падает и по трубке проходит фреон практически с атмосферным давлением.
Конденсатор
В конденсаторе происходит переход хладагента из газообразного в жидкое состояние, сопровождающееся активным выделением тепла. Этот составной элемент представляет собой обычный радиатор (обычно из алюминиевых сплавов), на который установлены вентиляторы.
Расположение конденсатора в автомобиле
Чтобы произошла смена агрегатного состояния хладагента, необходимо обеспечить отвод тепла. Поэтому конденсатор располагается в передней части авто под радиатором системы охлаждения. Это обеспечивает при движении авто поток воздуха, который и забирает тепло от конденсатора, тем самым обеспечивая конденсирование фреона. А если воздушного потока недостаточно, он создается принудительно – вентиляторами.
Осушитель
Постоянные перепады температуры приводят к тому, что влага, попавшая внутрь системы, кристаллизируется (становиться кусочками льда), которые могут повредить составные элементы кондиционера, в первую очередь – компрессора. Чтобы этого не произошло, в конструкцию добавлен осушитель. Представляет он собой емкость со специальным наполнителем, улавливающим влагу.
ТРВ, дроссель
Терморегулирующий вентиль (ТРВ) – клапан, обеспечивающий контроль давления в системе, также в этом узле начинается процесс испарения хладагента.
Виды и исполнение ТРВ
ТРВ используется не на всех автомобилях. Ряд автопроизводителей вместо него применяет дроссель и аккумулятор (в основном в системах с климат-контролем). Дроссель выступает в качестве клапана регулировки давления, а аккумулятор – компенсационный резервуар, в котором удерживается лишний фреон.
Испаритель
Испаритель – еще один радиатор, используемый в конструкции системы кондиционирования, но размещен он в салоне (под приборной панелью). В этом элементе происходит испарение хладагента, которое сопровождается сильным поглощением тепла из окружающей среды. При этом влага, находящаяся в воздухе, конденсируется на поверхности радиатора. Чтобы конденсат не попал в салон, испаритель оснащен системой дренажа, по которой вода выводится наружу (под авто).
Для активной отдачи тепла и распространения охлажденного воздуха по салону, на испаритель установлен электровентилятор, обеспечивающий принудительное создание воздушного потока.
Электрооборудование
Поддержание заданной температуры, управление кондиционером, принудительная подача воздуха обеспечивается электрооборудованием.
Поддержание нужной температуры происходит благодаря ряду температурных датчиков:
- температуры охлаждающей жидкости;
- термовыключатель вентилятора радиатора;
- температуры испарителя.
Вариант электрической схемы кондиционера
В зависимости от модели автомобиля могут использоваться другие датчики и иная схема управления.
Управление оборудованием происходит на блоке, установленном на передней панели. За счет органов управления кондиционер включается в работу, выполняется регулировка температурного режима.
Кондиционер в составе климат-контроля
Кондиционер может быть, как отдельной системой, так и входить в состав климат-контроля. Во втором случае все системы салона – вентиляции, обогрева и кондиционирования взаимодействуют между собой и управляются электронным блоком (ЭБУ). К примеру, поддержание нужной температуры в салоне обеспечивается подогревом воздуха после охлаждения. То есть, часть воздушного потока, прошедшего испаритель, подается на радиатор печки, а после смешивается с основным, тем самым регулируя температуру. При этом устройство кондиционера автомобиля, используемого в климат-контроле, не отличается от оборудования, выполненного в виде отдельной системы.
Принцип работы
Функционирование кондиционера осуществляется по замкнутому кругу. Компрессор выполняет нагнетание газообразного фреона, создавая давление, из-за чего хладагент разогревается. После этого по магистрали высокого давления вещество подается в конденсатор. В нем за счет отдачи тепла происходит конденсирование фреона, и он становиться жидкостью, все еще находящейся под давлением.
После конденсатора по магистралям хладагент движется дальше и проходит через осушитель, где из него удаляются частицы воды и других примесей, чтобы они не привели к поломке системы.
Из осушителя жидкий хладагент поступает в ТРВ, где происходит регулировка (снижение) давления. При этом падение давления приводит к началу процесса перехода в газообразное состояние. То же самое происходит и в системах, оснащенных дросселем с аккумулятором.
После ТРВ фреон попадает в испаритель, в котором происходит сильное падение давления из-за чего хладагент начинает испаряться, поглощая тепло из окружающей среды. Вода же, сконденсировавшаяся на поверхности радиатора, по дренажному каналу выходит из салона.
Пройдя испаритель хладагент, уже в газообразном состоянии, по магистрали низкого давления поступает к компрессору, и весь процесс повторяется вновь.
Положительные и отрицательные стороны
Если говорить о достоинствах системы кондиционирования, то оно всего одно – кондиционер обеспечивает прохладу в салоне летом. При этом не нужно открывать окна в авто, поскольку воздух внутрь поступает через систему вентилирования, проходя через салонный фильтр. Поэтому водителю не приходится дышать пыльным воздухом с примесями выхлопных газов (при движении в условиях города и простаивании в пробках).
А вот недостатков кондиционера – достаточно много:
- Кондиционер – дополнительная система, причем сложная по конструкции и требует обслуживания. Автовладельцу необходимо следить за состоянием трубопроводов и мест их соединений, периодически заправлять его хладагентом;
- Автомобили, оснащенные этим оборудованием, стоят дороже, а наличие климат-контроля существенно повышает цену на модель.
- Если привод компрессора осуществляется от коленчатого вала, то включение кондиционера сопровождается значительным падением мощности (до 15 л. с.), что особенно явно проявляется на авто с маломощными силовыми установками. Электропривод же создает значительную нагрузку на бортовую сеть. В любом случае включение кондиционера приводит к увеличению расхода топлива или заряда батарей электромобиля;
- Воздух, охлажденный кондиционером, подается вентилятором, поэтому в салоне создается сквозняк, который может стать причиной заболевания;
- Если влага, конденсирующаяся на испарителе, отводится, то бактерии, находящиеся в воздухе, остаются на этом радиаторе. Бактерии и грибки, накопившиеся на испарителе, не только создают неприятный запах в салоне, но и могут стать причиной появления аллергии;
- Ремонт кондиционера – дорогостоящий, поэтому при его поломке многие автовладельцы, не спешат восстанавливать систему, предпочитая эксплуатировать авто без ремонта системы кондиционирования (на работоспособность двигателя такая поломка никак не влияет);
- Фреон – химически агрессивное вещество, поэтому со временем он приведет к повреждениям составных компонентов системы, в первую очередь – магистралей и радиаторов. Поэтому поломка оборудования в любом случае произойдет.
Несмотря на большое количество недостатков, кондиционер – популярное оборудование и многие автовладельцы даже не рассматривают авто, не оснащенное таким устройством. А в некоторых европейских странах установка автокондиционера обязательное условие для автопроизводителей, эксплуатация авто без кондиционера в таких странах запрещена.
Автомобильный кондиционер. Принцип работы.
При включении кондиционера срабатывает электромагнитная муфта и стальной прижимной диск 3 примагничивается к шкиву 2. Шкив приводится в движение ремнем.
Начинает работу компрессор 1. Компрессор сжимает газообразный хладагент( при этом он сильно нагревается) и гонит его по трубопроводу в конденсор 4. Часто этот самый конденсор называют «радиатором кондиционера».
В конденсоре сильно нагретый и сжатый хладагент охлаждается. Охладиться ему помогает вентилятор 5, который включается одновременно со включением компрессора.
Остыв, сжатый хладагент конденсируется, и выходит из конденсора уже жидким. Жжидкий хладагент проходит через ресивер-осушитель 6. Тут от него отфильтровываются продукты износа компрессора и отделяется влага.
Часто на ресивере-осушителе есть смотровой глазок 9 через который можно посмотреть на жидкий хладагент. Выглядит он как газ в зажигалке. Через глазок можно визуально оценить, насколько заполнена система. Если часть хладагента утекла в атмосферу, то при работе компрессора в глазке будет видна молочно-белая пена. К сожалению, глазки есть далеко не на всех автомобилях.
Очистившись в ресивере-осушителе, хладагент попадает в терморегулирующий вентиль(ТРВ) 10. Терморегулирующий вентиль – это точный прибор, регулирующий подачу хладагента в испаритель в зависимости от интенсивности кипения хладагента в испарителе. Он препятствует попаданию жидкого хладагента в компрессор.
Проходя через ТРВ и попадая в испаритель, хладагент переходит в газообразное состояние и при этом сильно охлаждается.
Испаритель 12 — это тот же радиатор, только маленький. Хладагент охлаждает испаритель, а вентилятор гонит холодный воздух сквозь испаритель в салон автомобиля. Пройдя испаритель, все еще достаточно холодный хладагент снова попадает в компрессор. Круг замыкается.
Часть системы от компрессора до ТРВ называется напорной магистралью. Её всегда можно определить по тонким трубкам, которые теплые или горячие. Часть же от испарителя до компрессора называется обратной магистралью, или магистралью низкого давления. Она делается из толстых трубок и на ощупь холодная. Если в напорной магистрали во время работы компрессора давление колеблется от 7-ми до 15-ти атмосфер (в аварийных случаях и до 30-ти), то в обратной магистрали давление не превышает 3.5 атмосфер. Когда кондиционер выключен, давление в обеих магистралях уравнивается и составляет около 5-ти атмосфер.
За правильной работой системы следят несколько датчиков. Количество их варьируется. В нашем примере на ресивере-осушителе 6 стоит датчик 7 включения второй скорости вентилятора. Когда охлаждение конденсора 4 недостаточно (машина стоит в пробке), давление в напорной магистрали начинает стремительно расти, хладагент в конденсоре перестает конденсироваться. Датчик реагирует на скачок давления и включает вентилятор 5 на полную мощность.
Датчик 8 выключает компрессор, если давление в напорной магистрали достигает предельных величин. Датчик 11 выключает компрессор, если температура испарителя становится слишком низкой.
Устройство
Устройства
A — Компрессор с электромагнитной муфтой
B — Конденсатор
C — Ресивер с осушителем
D — Манометрический выключатель по высокому давлению
E — Сервисный штуцер высокого давления
F — Расширительный клапан
G — Испаритель
H — Сервисный штуцер низкого давления
I — Демпфер (не на всех автомобилях)
Компрессор
Компрессоры климатических установок представляют собой нагнетатели вытеснительного типа. Они работают только тогда, когда включена климатическая установка; включение компрессора происходит посредством электромагнитной муфты.
Компрессор повышает давление хладагента. При этом также повышается и его температура.
Без этого повышения давления не стало бы возможным последующее расширение и охлаждение хладагента в климатической установке.
Для смазки используется специальное холодильное масло, половина которого остается в компрессоре, а остальная часть распределяется по всему контуру хладагента. Предохранительный клапан, который в большинстве случаев размещен на компрессоре, защищает климатическую установку от слишком высокого давления.
Процесс сжатия
Компрессор всасывает через испаритель холодный газообразный хладагент с низким давлением. Газообразное состояние хладагента “жизненно необходимо” для компрессора, поскольку жидкий хладагент нельзя сжать, и это привело бы к разрушению компрессора.
Компрессор уплотняет хладагент и нагнетает его в виде горячего газа в конденсатор (сторона высокого давления контура хладагента). Таким образом, компрессор представляет собой место разделения сторон низкого и высокого давления контура хладагента.
Действие компрессора
Компрессоры климатических установок бывают различного типа:
поршневые нагнетатели;
спиральные нагнетатели;
лопастные нагнетатели;
аксиально-поршневые нагнетатели с вращающимся наклонным диском.
Вращение приводного вала посредством наклонного диска преобразуется в возвратно-поступательное движение поршней в цилиндрах. В зависимости от конструктивного исполнения может быть от 3 до 10 поршней, которые движутся параллельно приводному валу. Каждому поршню соответствует впускной клапан. Клапана открываются и закрываются автоматически в соответствии с тактом работы компрессора.
Климатическая установка рассчитывается на максимальную частоту вращения компрессора. Производительность компрессора определяется скоростью двигателя. При этом диапазон частоты вращения компрессора составляет от 0 до 6000 об/мин.
От частоты вращения компрессора зависит наполнение испарителя и, тем самым, хладопроизводительность климатической установки.
Чтобы было возможно согласовать работу компрессора со скоростью двигателя, температурой наружного воздуха и задаваемой водителем температурой воздуха в салоне – короче говоря, с потребностью в хладопроизводительности – были разработаны компрессоры регулируемой производительности с изменяющимся рабочим объемом. Это достигается изменением наклона вращающегося диска.
В компрессорах с постоянным рабочим объемом согласование с потребностью в хладопроизводительности происходит путем периодического включения и выключения компрессора посредством электромагнитной муфты.
Слева несаморегулирующийся компрессор. Справа саморегулирующийся.
Саморегулирующийся компрессор при включенной климатической установке работает постоянно.
Диапазон регулирования компрессора
Все промежуточные положения регулирования между верхним упором (100 %) и нижним упором (около 5%) соответствуют через различные значения давления в камерах требуемой в данный момент хладопроизводительности. Компрессор в процессе регулирования всегда работает!
Вращательное движение приводного вала передается на приводную ступицу и посредством вращающегося наклонного диска преобразуется в возвратно-поступательное движение поршней.
Наклонный диск в своем поступательном движении направляется направляющей планкой. Посредством изменения угла наклона диска задаются ходы поршней и, тем самым, подача компрессора.
Угол наклона зависит от давления в камере и, тем самым, от соотношения давлений над и под поршнями. Угол наклона обеспечивается пружинами, расположенными перед наклонным диском и за ним.
Давление в камере определяется величинами низкого и высокого давления, которые в свою очередь зависят от положения регулировочного клапана, и диаметром калиброванного дроссельного отверстия. Когда климатическая установка выключена, величины низкого, высокого давления и давления в камере одинаковы.
Пружины перед наклонным диском и за ним устанавливают наклонный диск в положение, соответствующее примерно 40% производительности. Дополнительное достоинство такого способа регулирования: в данном случае при движении автомобиля не ощущается заметного рывка при включении компрессора.
Большая подача при высокой хладопроизводительности – низкое давление в камере!
Величины высокого и низкого давления относительно большие.
- Сильфон 2 под воздействием высокого давления сжат.
- Сильфон 1 под воздействием относительно большого низкого давления также сжат.
- Регулировочный клапан открыт. Давление в камере снижается через сторону низкого давления.
- Суммарная сила давления со стороны низкого давления на переднюю часть поршней и давления пружины 1 больше, чем суммарная сила давления в камере на заднюю часть поршней и давления пружины 2.
- Сильфон 2 разжат.
- Сильфон 1 под воздействием относительно небольшого низкого давления также разжат.
- Регулировочный клапан закрыт. Сторона низкого давления отделена от давления в камере.
- Давление в камере снижается через калиброванное дроссельное отверстие.
- Суммарная сила давления со стороны низкого давления на переднюю часть поршней и давления пружины 1 меньше, чем суммарная сила давления в камере на заднюю часть поршней и давления пружины 2.
- ременного шкива с подшипником;
- подпружиненного диска со ступицей;
- электромагнитной катушки.
- Если повышается температура хладагента, выходящего из испарителя, то тогда хладагент расширяется в термостате. Поток хладагента через шаровой клапан к испарителю увеличивается.
- Если понижается температура хладагента, выходящего из испарителя, то тогда объем хладагента в термостате уменьшается.
- Давление в сенсорной трубке зависит от температуры сильно нагретого хладагента. Это давление действует в качестве силы отпирания (PFu) на мембрану.
- Давление в испарителе (PSa) действует на мембрану в противоположном направлении.
- Давление регулировочной пружины (PFe) действует в том же направлении, как и давление в испарителе.
- Дозирование количества проходимого хладагента. Это достигается наличием калиброванного отверстия. Через это отверстие может проходить только соответствующее давлению количество хладагента.
- Поддержание давления при работающем компрессоре на стороне высокого давления контура и, тем самым, жидкого состояния хладагента.
- В дросселе происходит падение давления. Перед входом в испаритель происходит охлаждение хладагента, обусловленное его частичным испарением.
- Разбрызгивание хладагента.
- реле среднего давления,
- косвенным подключением к муфте компрессора,
- через электронный модуль управления (ECM),
- сигналом активации переключателя кондиционера.
- пластинчатого типа,
- ребристого типа,
- змеевикового типа.
- трубчатый капиллярный датчик температуры ( F1 ),
- трубка компенсации давления ( F2 ),
- пружина нажимная ( F3 ).
- соединений,
- фитингов,
- компонентов системы кондиционирования,
- на шланги,
- на трубки, -осушители.
- При включении электромагнитной муфты компрессор всасывает фреон-газ и сжимает его при высоком давлении. На этом этапе температура газа сильно повышается.
- Горячий сжатый газ поступает в конденсатор, где превращается в жидкость с отдачей тепла воздушным струям, образующимся при движении автомобиля и с помощью вентилятора, который включается одновременно с компрессором.
- Жидкий фреон высокого давления направляется в осушитель, который удаляет из хладагента влагу, мелкие механические частицы, пыль, грязь.
- После осушителя фреон-жидкость направляется в расширительный клапан, где он приобретает переходное состояние жидкость-пар с низким давлением. Удобная опция – наличие смотрового глазка, через который можно определить уровень хладагента в системе. При недостаточном количестве хладагента в глазке будет видна белая пена.
- В испарителе давление хладагента резко снижается, из-за чего он начинает «кипеть», меняя свое агрегатное состояние на газообразное. При этом стенки испарителя сильно охлаждаются. Вентилятор разносит холодные воздушные струи по салону автомобиля. На испарителе заканчивается часть системы, называемая напорной магистралью.
- После испарителя по магистрали низкого давления (обратной) фреон-газ направляется в компрессор, и цикл повторяется.
- Одно из основных правил – герметичность салона. При открытых окнах кондиционер частично работает вхолостую, что становится причиной лишних затрат энергии, а, следовательно, топлива. Сократить затраты энергии кондиционирование позволит парковка автомобиля в тени и использование аксессуаров, уменьшающих нагрев авто.
- Если ТС сильно нагрелось на стоянке, то перед запуском двигателя необходимо проветрить салон, открыв двери и окна. Движение необходимо начать с небольшой скоростью при открытых окнах, и только потом, закрыв окна, включить кондиционер.
- Нельзя включать агрегат сразу на полную мощность, поскольку такое действие сокращает его срок службы. Если автокондиционер работает в автоматическом режиме, то его необходимо включить на минимум. На требуемый режим он выйдет самостоятельно.
- Кондиционер надо выключить за несколько минут до остановки автомобиля, оставив вентилятор в рабочем состоянии. Такая предосторожность предотвращает конденсацию жидкости на испарителе и появление лужи под ним.
- Включать кондиционер нужно не только в летнее время, но и хотя бы раз в месяц осенью и зимой, чтобы избежать длительного простоя, негативно влияющего на работоспособность устройства и длительность его рабочего периода. Профилактическое включение проводят в теплом помещении в течение 10-15 минут. Включать кондиционер можно только после прогрева салона.
- Откачка остатков хладагента для взвешивания и удаления из системы старого масла.
- Вакуумирование. В ходе этого этапа удаляются оставшиеся воздух и влага. В зависимости от мощности оборудования этот процесс занимает до получаса.
- Проверка на герметичность. Точность результатов этого этапа зависит от качества вакуумирования. Герметичность обычно проверяют нагнетанием азота. Его давление измеряют сразу после закачки в систему и после получасовой выдержки. Если результаты измерений совпадают, значит, протечки отсутствуют.
- Заправка масла. Часто в масло добавляют трейсер (краситель), который облегчает обнаружение протечек.
- Последний этап – загрузка хладагента.
- Устройство перестало выполнять свою прямую функцию – охлаждать внутреннее пространство. Причиной этого может быть утечка хладагента, которая происходит из-за поврежденных фитингов, изношенных уплотнительных колец, повреждений магистрали. Вторая причина – разгерметизация конденсатора из-за его повреждения солями и грязью.
- Шум при включении и масляные потеки на компрессоре. Свидетельствуют о поломке компрессора. В этом случае требуется его немедленная диагностика.
- Неэффективная работа устройства. Причины – засорение испарителя (присутствуют неприятный запах, влага), конденсатора, поломка вентилятора или датчика, который им управляет. Еще одна причина – выход из строя ТРВ из-за его засорения.
Увеличение угла наклона наклонного диска ведет к большему ходу поршней и росту подачи.
Малая подача при малой хладопроизводительности – высокое давление в камере!
Величины высокого и низкого давления относительно небольшие.
Уменьшение угла наклона наклонного диска ведет к меньшему ходу поршней и снижению подачи.
Электромагнитная муфта
Посредством электромагнитной муфты осуществляется силовая связь между компрессором и работающим двигателем.
Устройство
Муфта состоит из:
Ступица подпружиненного диска жестко монтируется на приводной вал компрессора. Ременный шкив может вращаться на подшипнике, закрепленном на корпусе компрессора у выхода вала.
Электромагнитная катушка жестко соединена с корпусом компрессора. Между подпружиненным диском и ременным шкивом имеется зазор “A”.
Действие
Двигатель автомобиля через поликлиновой ремень приводит в движение ременный шкив (см. стрелку). Шкив при выключенной климатической установке свободно вращается. Когда компрессор включается, к электромагнитной катушке подводится напряжение. Возникает магнитное силовое поле. Под воздействием этого поля подпружиненный диск сдвигается к вращающемуся ременному шкиву (зазор “A” выбран) и образует силовую связь между ременным шкивом и приводным валом компрессора. Компрессор начинает вращаться.
Компрессор работает до тех пор, пока не будет отключено питание электромагнитной катушки. Под действием пружин подпружиненный диск отходит от ременного шкива. Ременный шкив опять вращается свободно, без связи с приводным валом компрессора.
Конденсатор
Конденсатор является “холодильником” климатической установки.
Устройство конденсатора
Конденсатор состоит из изогнутых трубок, которые соединены перегородками. Он имеет большую поверхность охлаждения, чем достигается высокая теплопередача.
Конденсатор после включения климатической установки охлаждается вентилятором системы охлаждения двигателя для обеспечения холодильного цикла. Обычно конденсатор установлен перед вентилятором. Тем самым повышается эффективность действия конденсатора. Теплообмен в конденсаторе происходит вследствие воздушного охлаждения. Охлаждение достигается посредством напора воздуха при движении автомобиля и действия вентилятора – в некоторых исполнениях и посредством действия дополнительного вентилятора. Вентилятор начинает работать главным образом при включении климатической установки. Исключение из этого правила бывает при наличии датчика давления G65, при котором обеспечивается запаздывание включения вентилятора по достижению определенного давления.
Загрязнение конденсатора уменьшает количество проходимого через него воздуха, что может отрицательно повлиять на хладопроизводительность климатической установки и охлаждение двигателя.
Действие
Сверху в конденсатор подается от компрессора горячий газообразный хладагент с температурой около 50–700C. Трубки и ламели конденсатора воспринимают тепло хладагента.
Холодный наружный воздух проходит через конденсатор, забирает тепло, благодаря чему хладагент охлаждается. При определенной температуре и определенном давлении охлажденный хладагент конденсируется и переходит в жидкое состояние. Снизу хладагент выходит из конденсатора.
Ресивер и осушитель
Ресивер служит в контуре хладагента с расширительным клапаном в качестве демпферного и буферного резервуара для хладагента. В различных условиях работы, что сопровождается изменением тепловой нагрузки на испаритель и конденсатор, изменением скорости компрессора, также меняется поток хладагента в контуре. Для сглаживания колебаний потока хладагента служит ресивер.
Посредством осушителя влага, которая при монтаже проникла в контур хладагента, химически связывается. В зависимости от исполнения осушителя он может принять от 6 до 12 грамм воды. Количество принятой воды зависит от температуры. При понижении температуры количество принятой воды увеличивается.
Также в осушителе осаждаются продукты износа частей компрессора, грязь, попавшая в контур при монтаже, и прочие инородные примеси.
Действие
Из конденсатора жидкий хладагент попадает сбоку в ресивер. Он там собирается, проходит через осушитель и течет через подъемную трубу ровным непрерывным потоком без наличия пузырьков газа к расширительному клапану.
Ресивер следует после каждого вскрытия контура хладагента заменять. Ресивер следует перед установкой как можно дольше держать закрытым, чтобы было минимальным поглощение осушителем влаги из окружающего воздуха.
Расширительный клапан
Расширительный клапан представляет собой такое место в контуре, где в хладагенте перед испарителем снимается внутреннее напряжение, что приводит к охлаждению испарителя. Расширительный клапан находится на границе разделения сторон низкого и высокого давления контура хладагента.
Посредством расширительного клапана происходит регулирование потока хладагента к испарителю в зависимости от температуры паров хладагента на выходе из испарителя. В испарителе испаряется столько хладагента, сколько необходимо для поддержания равномерного “холода” в испарителе.
Регулирование
Поток хладагента подвергается регулированию посредством расширительного клапана в зависимости от температуры.
Поток хладагента через шаровой клапан к испарителю уменьшается. Термостатический расширительный клапан функционирует под действием трех сил:
Расширительные клапаны отрегулированы. Не следует изменять регулировку. Сенсорную трубку нельзя перегибать; она заполнена специальным газом.
Новое поколение расширительных клапанов
Расширительный клапан нового поколения размещается между сторонами высокого и низкого давления контура непосредственно перед испарителем.
Управление расширительным клапаном происходит в зависимости от температуры. В нем имеется регулировочный модуль с термоголовкой и шаровым клапаном. Термоголовка с одной стороне мембраны наполнена специальным газом. С другой стороны мембраны термоголовка связана посредством отверстий для уравновешивания давления с выходом из испарителя (низкое давление). Привод шарового клапана осуществляется через толкатель. Температура на стороне низкого давления определяет давление специального газа и, тем самым, количество испаряющегося хладагента.
Расширительный клапан всегда находится в теплоизоляционной обшивке.
Испаритель
Испаритель работает по принципу теплообменника.
Он представляет собой составную часть климатической установки, которая встроена в корпус обогревателя. При включенной климатической установке воздух, который проходит через ламели холодного испарителя, отдает тепло. При этом воздух охлаждается, осушается и очищается.
Возникающие под стоящим неподвижно автомобилем лужицы (конденсат) не свидетельствует о наличии неисправности.
Действие
Поступающий из расширительного клапана хладагент в испарителе расширяется и при этом сильно охлаждается. Он переходит в газообразное состояние, при этом он кипит. При кипении температура в испарителе лежит существенно ниже точки замерзания воды.
Необходимую теплоту для испарения хладагент забирает из окружающей его среды – в данном случае из проходящего через испаритель воздуха. Этот охлажденный воздух поступает в салон автомобиля.
Влага в охлажденном воздухе осаждается на испарителе в тех местах, где температура ниже точки росы, т.е. происходит конденсация. Так возникает конденсат. Воздух таким образом “осушен”. Благодаря этому климат в салоне автомобиля существенно улучшается; воздух здесь во всех отношениях приятен.
Различного вида взвеси, которые есть в воздухе, осаждаются с водой на испарителе. Таким образом, испаритель также и “очищает” воздух.
Контур хладагента с дросселем
Устройства:
A — Компрессор с электромагнитной муфтой
B — Манометрический выключатель по высокому давлению
C — Конденсатор
D — Сервисный штуцер высокого давления
E — Дроссель
F — Испаритель
G — Манометрический выключатель по низкому давлению
H — Сервисный штуцер низкого давления
I — Ресивер-коллектор
Впрыск жидкого хладагента в испаритель производится в отличие от контура с расширительным клапаном через дроссель. На климатических установках с дроссельным регулированием вместо ресивера для жидкого хладагента на стороне высокого давления имеется ресивер-коллектор на стороне низкого давления. Он служит в качестве сборника и как защита для компрессора (от гидроудара).
Все другие устройства идентичны устройствам контура с расширительным клапаном. В зависимости от конструктивного исполнения и необходимости проведения контрольных и ремонтных работ в системе могут находиться другие подсоединительные штуцера для сервисных работ или сенсорные датчики для контроля процессов в контуре.
Величины давления и температуры в контуре всегда зависят от режима работы климатической установки в данный момент. Приводимые величины настраиваются по окружающей температуре по истечению определенного времени.
Дроссель
Дроссель является самым узким местом в контуре хладагента, непосредственно перед испарителем. Это узкое место “дросселирует” поток хладагента.
Перед дросселем хладагент теплый и под высоким давлением. С проходом через дроссель происходит резкое падение давления. Хладагент при низком давлении холодный.
Дроссель представляет собой “границу” между сторонами высокого и низкого давления контура. Наличие уплотнения гарантирует, что хладагент пройдет дроссель только в узком месте.
Назначение
В дросселе перед сужением расположена сетка-фильтр. За сужением имеется сетка для разбрызгивания хладагента перед попаданием в испаритель.
Ресивер-коллектор
В зоне низкого давления климатической установки с дросселем расположен ресивер-коллектор. Он установлен на теплом месте в моторном отсеке (довыпаривание). Ресивер-коллектор служит в качестве демпфирующего резервуара и сборника для хладагента и холодильного масла и как защита для компрессора.
Выходящий из испарителя газообразный хладагент входит в ресивер. В случае если в хладагенте находятся следы влаги, вода связывается в осушителе, встроенном в ресивер. Хладагент в газообразном состоянии собирается под крышкой и через U-образную трубку отсасывается в компрессор в виде газа. Таким образом, в этой системе обеспечивается только газообразное состояние хладагента и отсутствие капель жидкости перед компрессором, что гарантирует отсутствие повреждений компрессора.
Холодильное масло собирается на дне ресивера-коллектора. Засасываемый компрессором газ захватывает через отверстие в U-образной трубке холодильное масло. Сетка-фильтр предотвращает засорение отверстия загрязненным маслом.
Ресивер следует перед установкой как можно дольше держать закрытым (заглушки на штуцерах), чтобы было минимальным поглощение осушителем влаги из окружающего воздуха.
Регулирование системы
Климатическая установка работает только тогда, когда безупречно функционируют все элементы системы. При выходе из строя какого-либо элемента может измениться рабочее давление, при этом не исключена возможность повреждения как самой климатической установки, так и двигателя автомобиля. Во избежание этого в контуре хладагента предусмотрены устройства непрерывного контроля.
Блок управления перерабатывает сигналы от этих устройств и периодически отключает и подключает компрессор, меняет скорость вращения вентилятора. Благодаря этому достигается постоянное нормальное давление в контуре хладагента. В установках с нерегулируемым компрессором сигналы от устройств контроля используются для согласования работы системы с потребностью в хладопроизводительности. (Включение и выключение климатической установки в соответствии с потребностью в хладопроизводительности. Одновременно предотвращается обледенение испарителя.) Устройство установки показано на рисунке.
Необязательно, чтобы в конкретной климатической установке были бы все указанные здесь устройства. Также может быть отличное от представленного здесь w местонахождение отдельных устройств. На рисунке показаны устройства регулирования простой климатической установки с ручным управлением:
1 — Выключатель климатической установки
2 — Предохранительный клапан на компрессоре
3 — Вентилятор для охлаждающей жидкости
4 — Манометрический выключатель климатической установки
5 — Датчик температуры охлаждающей жидкости
6 — Термовыключатель вентилятора радиатора охлаждающей жидкости
7 — Датчик температуры испарителя
8 — Вентилятор свежего воздуха
9 — Блок управления двигателя
10 — Электромагнитная муфта
К — Блок управления климатической установки (и/или блок управления для вентилятора радиатора охлаждающей жидкости в зависимости от исполнения климатической установки).
Кондиционер автомобильный главные детали схемы
Практикуемые схемные решения, а также используемые типы компрессоров – основных компонентов системы кондиционирования воздуха автомобиля, представлены ранее опубликованным материалом сайта Zetsila. Этой статьёй рассматривается ещё ряд технологических деталей на кондиционер автомобильный, входящих в состав классической схемы установки, применяемой на транспортных средствах.
Конденсатор кондиционера автомобильного – функция и конструкции
Какие применяются конденсаторы для автомобильного кондиционера? Какие виды испарителей поддерживает кондиционер автомобильный с целью получения высокой производительности по холоду?
Что такое TVX или TEV (Thermal Expansion Valve) или TEBV кондиционера автомобиля? Рассмотрим эти и другие моменты.
Главная функция конденсатора кондиционера автомобильного заключается в обеспечении действия теплообменника, отбирающего тепло от горячего хладагента за счёт охлаждения наружным воздухом.
Например, фреон R134a, традиционно заправляемый в кондиционер автомобильный, нагнетаемый компрессором в конденсатор, имеет состояние высокотемпературного пара высокого давления.
Когда парообразный фреон (R134a) высокой температуры проходит через трубки конденсатора, стенки трубок нагреваются, но тепло передаётся от стенок трубок более холодному окружающему воздуху.
Благодаря такому теплообмену, пары хладагента конденсируются (переходят из газообразного состояния в жидкое состояние). Фактически образуется жидкий фреон R134a высокого давления и температуры.
Типичная конструкция конденсаторов кондиционера автомобиля
Одним из вариантов исполнения выступает конструкция конденсатора змеевикового типа. Конструкция фактически содержит одну длинную металлическую трубку (как правило, медную), из которой сформирован «змеевик», дополненный рёбрами охлаждения на каждом участке трубы между сгибами.
Исполнение конденсатора кондиционера автомобиля: А – змеевиковый тип; B – тип параллельного включения трубок; 1 – входной патрубок под парообразный хладагент; 2 – выходной патрубок для жидкого хладагента; 3 – область дефлектора
Другой, не менее распространённый вариант, — сборка параллельно размещёнными участками труб. Эта конструкция конденсатора кондиционера автомобильного представляет своего рода радиатор поперечного потока.
Вместо прохождения хладагентом однотрубной системы (змеевиковый тип), здесь прохождение хладагента осуществляется через несколько труб. Этот инженерный подход даёт увеличение площади поверхностного контакта с наружным воздухом.
Поскольку автомобильные установки кондиционирования, работающие на фреоне R134a, функционируют при более высоких давлениях хладагента, требуются конденсаторы с меньшим внутренним потоком.
Поэтому большинство производителей автомобильных кондиционеров выбирают конденсатор параллельного потока для версии под R134a. Такие конструкции примерно на 25% эффективнее змеевиковых конденсаторов.
Фактор уплотнения конденсаторов кондиционера автомобиля
Предусматривается организация надёжного уплотнения между конденсатором и радиатором автомобиля для предотвращения возврата нагретого воздуха через неизолированные пространства (обычно 25 мм).
Когда наружный воздух пропускается через конденсатор (продувается вентилятором радиатора), температура воздуха увеличивается. Если между конденсатором и радиатором имеются зазоры, нагретый воздух может циркулировать обратно через конденсатор.
Этот момент приводит к повышению температуры конденсатора, соответственно, вызывает снижение производительности автомобильной системы кондиционирования воздуха.
Вентилятор конденсатора на кондиционер автомобильный
Большинству автомобилей, оборудованных кондиционером, требуется электрический вентилятор — устройство содействия потоку воздуха. Благодаря вентилятору, воздух проталкивается (или протягивается, в зависимости от того, на какой стороне конденсатора установлен вентилятор), через межтрубное пространство.
Типичное исполнение вентиляторов конденсатора кондиционера автомобильного: 1 – стандартная конвенциональная конструкция; 2 – конструкция с ассиметричными лопастями крыльчатки. Второй вариант путём перестановки лопастей позволяет менять направление воздуха
Большинство кондиционеров автомобильных, где используется фреон R134a, требуют дополнительного охлаждения конденсатора по причине более высокого рабочего давления R134a.
Также львиная доля современных автомобилей, как правило, имеют уменьшенные решётки бамперов, чем ухудшаются условия прохождения воздушного потока. Вентиляторы конденсатора кондиционера автомобильного, включаются в работу различными способами:
Увеличенное использование (время работы) вентиляторов охлаждения характерно для систем кондиционирования на фреоне R134a по причине образования более высокой температуры сжатия хладагента в компрессоре.
Испаритель кондиционера автомобильного – функция и конструкции
Хладагент R134a поступает в змеевик испарителя в виде жидкости низкого давления и низкой температуры. Когда такая низкотемпературная жидкость проходит через змеевик испарителя, поверхность трубки змеевика охлаждается фактически до температуры проходящей жидкости.
В свою очередь тёплый салонный воздух, продуваемый вентилятором через трубную систему испарителя, охлаждается за счёт эффекта теплообмена. Этим эффектом отмечена главная функция испарителя кондиционера автомобильного.
На практике используются испарители кондиционеров автомобильных:
Работа испарителей первых двух типов аналогична работе конденсатора автомобильного кондиционера с параллельным потоком, когда имеет место многопоточный ход хладагента и создаётся увеличенное поверхностное охлаждение.
Распространённая конструкция испарителя пластинчатого типа, применяемого на кондиционерах автомобильных под фреон R134a: 1 – вход жидкого фреона низкого давления; 2 – выход парообразного фреона низкого давления; 3 – разделяющие дефлекторы (перегородки)
Соответственно, большинство производителей кондиционеров автомобильных предпочитают дизайн пластинчатых и ребристых испарителей для фреона R134a. Так достигается увеличение производительности на 20% по сравнению с конструкциями змеевикового типа.
Кондиционер автомобильный и клапан теплового расширения
Поток хладагента, поступающего в трубки испарителя, необходимо контролировать для достижения максимального эффекта охлаждения и обеспечения полного испарения жидкого хладагента.
Такой эффект достигается при помощи теплового расширительного клапана (TXV — Thermal Expansion Valve). Также встречается иностранная аббревиатура TEV, но общей сути устройства не меняет.
Устройство клапана теплового расширения, применяемого в схемах кондиционеров автомобильных: 1 – пружина; 2 – трубка-дозатор; 3 – диафрагма; 4 – хладагент; 5 – капиллярная трубка; 6 – шариковый клапан; 7 – трубка компенсирующего давления: А – нажимной шток
Клапаном теплового расширения контролируется поток хладагента посредством системы компенсации давлений, работу которой сопровождают:
Когда температура фреона на выходе испарителя увеличивается, хладагент ( 4 ) внутри капиллярной трубки клапана расширяется. Сила расширения двигает диафрагму ( 3 ) по направлению вниз.
Под действием диафрагмы двигается также штифт ( A ), оказывая воздействие на шариковый клапан ( 6 ). В результате шарик открывает дозирующее отверстие ( 2 ), позволяя большему количеству R134a проходить в сторону впускного патрубка испарителя. Так работает функция «открывания».
Обратная функция – «закрывания», действует следующим образом: по мере охлаждения выпускной трубы испарителя, хладагент внутри капиллярной трубки ( 5 ) сжимается. Силы F2 и F3 приводят диафрагму ( 3 ) в движение.
При этом штифт ( A ) передвигается вверх, двигая шариковый клапан в направлении дозирующего отверстия ( 2 ), ограничивая поток фреона R134a. По мере повышения температуры на выходе испарителя (в результате открывания), процесс закрытия повторяется.
Кондиционер автомобильный — блок клапанов теплового расширения
Наряду с описанной выше конструкцией клапана теплового расширения, в схемах кондиционеров автомобильных применяется также блок клапанов теплового расширения (TEBV — Thermal Expansion Block Valve).
Этот вид запорной арматуры отличается наличием четырёх проходов, но функционально действует аналогично выше упомянутой арматуре.
Блочная версия клапана теплового расширения, также применяемого на авто-кондиционере: 1 – пружина; 2 – шариковый клапан; 3 – дозирующее отверстие; 4 – область компенсационного давления; 5 – металлическая диафрагма; 6 – хладагент; 7 – чувствительный элемент; 8 – активирующий шток
Работа блока клапанов теплового расширения по-прежнему основана на принципе расширения / сжатия хладагента внутри диафрагмы (5), но в этой конструкции исключена отдельная капиллярная трубка.
Вместо капиллярной трубки определение изменения температуры и давления хладагента осуществляется через выход испарителя и запорный клапан. Когда хладагент со стороны выхода испарителя проходит через чувствительный элемент (7), происходит расширение или сжатие хладагента.
Как результат — активирующий штифт (8) отодвигает шариковый клапан (2) или придвигает к дозирующему отверстию. Этой операцией регулируется количество хладагента на входе змеевика испарителя в зависимости от заданной температуры.
Термин «перегрев» кондиционер автомобильный
Определённой области испарителя кондиционера автомобиля присущ характерный эффект — полное испарение хладагента R134a. После такого эффекта любое дополнительное тепло, поглощаемое парами R134a, описывается как «перегрев».
Значение «перегрева» можно представить как разность температур выше точки, в которой жидкий фреон R134a превращается в пар. Как правило, значения для компенсации перегрева тепловым расширительным клапаном устанавливаются на заводе-изготовителе этой запорной арматуры.
Поэтому следует убедиться в случае замены, что клапан относится к типу, подходящему для системы кондиционирования. Температура насыщения равна температуре, при которой хладагент в жидкой форме превращается в пар при данном давлении.
Фактическая температура равна температуре хладагента на выходе испарителя. Отсюда температура «перегрева» вычисляется, как:
Тфакт. – Т насыщ. = Т перегр.
Уплотнения, гибкие шланги и сервисные порты
Резиновая смесь, применяемая для изготовления уплотнительных колец:
используемых с фреоном R134a, представляет собой гидрированный бутадиен-нитрильный каучук (HNBR — Hydrogenated Nitrile Butadiene Rubber).
Резина на основе этой смеси, имеет зелёный оттенок. Смазка уплотнительных колец выполняется посредством минерального масла.
Кондиционер автомобильный — шланги специальные резиновые
Все шланги и трубки, входящие в комплект кондиционера автомобильного, предварительно смазываются. Также подлежат смазыванию уплотнительные кольца, поставляемые в качестве запасных. Другие производители могут использовать уплотнительные кольца другого цвета и размера.
Следует убедиться, что для типа обслуживаемой или ремонтируемой системы используются подходящие уплотнительные кольца. Нельзя использовать уплотнительные кольца под фреон R12 в системе, где заправлен фреон R134a.
Подмена непременно приведёт к повреждению уплотнительных колец по причине отсутствия хлора в составе фреона R134a. Между тем допустимо применять уплотнительные кольца для фреона R134a в системе с фреоном R12.
Гибкие резиновые шланги автомобильного кондиционера: A – под хладагент R12; B – под хладагент R134a; 1(A) – каучуковый нитрил; 1(B) – нейлон; 2(A) – армирование; 2(B) – каучуковый нитрил; 3(A) – резина; 3(B) – армирование; 4 — резина
Гибкие резиновые шланги под фреон R134a и R12 также имеют некоторые отличия. Шланги для хладагента R134a отличаются наличием нейлоновой внутренней облицовкой.
Благодаря такой облицовке, практически полностью исключена утечка хладагента, которая естественным образом происходит по причине пористой структуры резиновых шлангов.
Шланги под фреон R134a имеют меньший наружный диаметр и более тонкие стенки, обеспечивая лучшую гибкость и снижение уровня шума в системе кондиционирования. Нельзя использовать шланги под хладагент R12 в системе кондиционирования на фреоне R134a.
Масло типа PAG и водород, присутствующие в составе хладагента R134a, приводят к быстрому износу обычных нитриловых шлангов для фреона R12. Плюс к этому шланги под хладагент R12 обычно имеют больший наружный диаметр, что способствует увеличению уровня шума.
Кондиционер автомобильный — сервисные порты системы
Сервисные порты для зарядки фреоном устанавливаются:
Эти порты зарядки позволяют обслуживать и тестировать систему кондиционирования непосредственно под давлением. Порты разных размеров определяют верхнюю и нижнюю стороны системы кондиционирования.
Пластиковая крышка с резиновым уплотнением используется для закрытия отверстия зарядного порта и предотвращения утечки. Специальная конструкция зарядного клапана разработана для соответствия зарядным портам R134a.
Клапаны Шредера допускают некоторую утечку, поэтому должны закрываться пластиковыми защитными колпачками. Клапаны Шредера, предназначенные для R134a, должны использоваться только в системах на R134a.
При помощи информации: AriaZone
КРАТКИЙ БРИФИНГ
Z-Сила — публикации материалов интересных полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мульти-тематическая информация — СМИ .
Как работает автомобильный кондиционер?
Современные автомобили – и грузовые, и легковые, и даже бюджетного класса – невозможно представить без кондиционера, обеспечивающего охлаждение воздуха в салоне или кабине в жаркие дни. Принцип его работы, аналогичный принципу действия холодильника и бытового кондиционера, основан на способности хладагентов поглощать и выделять тепло при изменении агрегатного состояния. Автомобильный кондиционер отличается от обычного бытового небольшими размерами и видом привода.
Конструктивные элементы автокондиционеров
В устройство автомобильного кондиционера входят: компрессор, конденсатор, осушитель, терморегулирующий вентиль, испаритель, электрическое оборудование. Все компоненты соединяются между собой магистралями высокого и низкого давления с созданием герметизированной кольцевой системы. Функции хладагента выполняет тетрафторэтан R-134а, который чаще всего называют фреоном. В этой системе, помимо фреона, присутствует компрессорное мало. Оно смазывает детали компрессора, отводит мелкие частицы и удаляет часть тепла.
Компрессор и привод
Основной узел кондиционера – компрессор. Он создает давление, необходимое для движения хладагента по системе и его сжатия, при котором происходит изменение агрегатного состояния фреона. Компрессор разделяет напорный и обратный контуры. К первому контуру относятся все узлы до испарителя, ко второму – магистраль, находящаяся между испарителем и компрессором. На ТС устанавливают кондиционеры с различными конструктивными вариантами компрессоров.
Схема компрессора с качающейся шайбой
Большинство компрессоров автомобильных кондиционеров приводится в действие коленвалом с использованием ременной передачи. Поскольку этот агрегат используется не всегда, в конструкции привода предусмотрен механизм отключения, функции которого обычно выполняет электромагнитная муфта. В электромобилях кондиционер работает от электрического двигателя, а в гибридных ТС предусмотрен комбинированный привод.
Конденсатор
Конденсатор – это устройство, в котором фреон из газа превращается в жидкость. Оно представляет собой систему изогнутых трубок, соединенных между собой перегородками. Для этого процесса характерно значительное выделение тепла, поэтому конденсатор монтируют в передней части автомобиля под радиатором системы охлаждения. Хладагент в конденсаторе охлаждается воздушными потоками, возникающими естественно во время поездок, и принудительно – с использованием вентилятора.
Осушитель
Из-за температурных перепадов влага, попавшая в систему, кристаллизуется. И в таком состоянии она может повредить компоненты автомобильного кондиционера, и особенно – компрессор. В системе имеется осушитель, представляющий собой емкость с веществом, способным эффективно впитывать влагу.
Терморегулирующий вентиль
ТРВ-терморегулирующий вентиль предназначен для автоматического регулирования потока фреона в испарителе. Также вместо этого вентиля может быть установлена расширительная трубка (лишена возможности регулировать поток фреона) и аккумулирующий баллон. Баллон установлен на линии всасывания от испарителя до компрессора. Аккумулирующий баллон устанавливают для того чтобы удержать не докипевший фреон. Т.К. жидкий фреон может сломать поршневую группу в компрессоре (гидроудар).
Испаритель
Как и конденсатор, испаритель представляет собой радиатор, только маленький. Он монтируется в салоне под приборной панелью. Этот узел обеспечивает испарение фреона с поглощением большого количества тепла. На поверхности испарителя конденсируется влага, поэтому для ее удаления наружу (под транспортное средство) предусмотрена дренажная система. Вентилятор эффективно распространяет прохладный воздух по внутреннему пространству ТС.
Электрическое оборудование
Электрические устройства используются для управления автокондиционером, работой вентилятора, для поддержания определенной температуры в салоне. При наличии электронного блока кондиционер функционирует в автоматическом режиме.
Магистрали
К магистралям высокого давления предъявляются высокие требования по способности выдерживать высокое давление и повышенные температуры. Такие контуры изготавливают из толстостенных трубок, выдерживающих давление до 30 атмосфер, которое может возникать в нештатных ситуациях. Магистрали низкого давления изготавливаются из трубок общего использования.
Принцип работы автомобильного кондиционера
Рабочий процесс автокондиционера имеет цикличный характер:
Корректность работы автомобильного кондиционера контролирует несколько датчиков, их номенклатура и количество в разных устройствах разные. Датчик давления реагирует на скачки давления и регулирует мощность вентиляции. Датчик температуры выключает компрессор, если температура внутреннего пространства выходит за установленный предел.
Как работает автокондиционер в составе климат-контроля
Кондиционер для автомобиля может использоваться как самостоятельно, так и в составе системы климат-контроля. В последнем случае все системы, создающие комфортный микроклимат в салоне, – вентиляционная, отопления и кондиционирования – работают комплексно. Их эффективное взаимодействие обеспечивает электронный блок управления. Например, для создания комфортного микроклимата часть холодной воздушной струи, которая идет от испарителя, направляется на радиатор отопителя. Слегка подогретый поток воздуха смешивается с основным воздушным пространством. Автомобильные кондиционеры, которые работают самостоятельно и в составе климат-контроля, имеют одинаковое устройство.
Климатические системы, работающие в автоматическом режиме, самостоятельно определяют особенности функционирования компонентов климат-контроля. Пользователь только выставляет температуру, а электронный блок управления обеспечивает эффективное выполнение задачи.
Советы по эксплуатации и обслуживанию автомобильного кондиционера
Соблюдение правил эксплуатации и обслуживания автокондиционеров повысить эффективность их работы и продлит рабочий период этих агрегатов:
Рекомендуется периодически обслуживать агрегат с дозаправкой хладагента, заменой масла и фильтра, что позволит избежать дорогостоящих ремонтов и его преждевременной замены.
Правила заправки автомобильного кондиционера
В процессе эксплуатации автокондиционера происходит медленная утечка фреона, которая при нормальном состоянии агрегата составляет до 15% в год. Чем старше кондиционер, тем выше естественная утечка.
Для качественной заправки автокондиционера требуется профессиональное оборудование. Для заправки системы на авто малого или среднего класса требуется примерно 0,5 кг хладагента. Точная информация о типе хладагента и его необходимом количестве имеется в сервисной книжке к ТС.
После завершения всех операций заводят двигатель и включают кондиционер с обдувом на полную мощность, доводят обороты двигателя до 2500 об/мин. Далее проверяют показатели манометров. Манометр низкого давления должен показать примерно 2 бара, высокого – 15-18 бар, трубка обратного контура – быть холодной. В салон должен поступать холодный воздух, а компрессор – периодически выключаться.
В продаже имеются наборы для ручной заправки системы кондиционирования, но для их эффективного использования требуются определенный опыт и навыки.
Наиболее распространенные неисправности автомобильного кондиционера
При использовании автомобильного кондиционера чаще всего встречаются следующие проблемы:
Обмерзание шлангов, самостоятельное отключение устройства. Причина – неисправность осушителя, которая может возникнуть из-за неправильной заправки автокондиционера или непрофессионально проведенного ремонта.
Неисправности могут возникать как по причине естественного износа узлов автокондиционера, так и из-за нарушения правил его эксплуатации. При обнаружении хотя бы одного тревожного признака необходимо немедленно обратиться к помощи специалистов для проведения диагностики всех узлов системы. Заправлять хладагент также желательно в специализированном автосервисе, где есть профессиональное оборудование и квалифицированные мастера.