Что такое корректор фар в автомобиле
Перейти к содержимому

Что такое корректор фар в автомобиле

  • автор:

Что такое корректор фар: виды, типы и принцип работы

В процессе развития автопрома конструкция фар постоянно усложнялась, и через некоторое время их начали оснащать устройством, ограничивающим высоту излучаемого фарой пучка света. Эта условная граница в теоретических выкладках по конструкции фар называется светотеневой границей или СГТ (свето-теневая граница).

Фары «старого образца», то есть произведенных приблизительно с 60-х по 90-е годы, можно было отрегулировать заранее вручную, и во время езды высота границы оставалась неизменной. Автомобили более позднего периода начали оснащать устройством, которое позволяет регулировать высоту границы на ходу, делая ее выше или ниже, в зависимости от рельефа местности и загруженности автомобиля.

Устройства динамического изменения высоты СГТ называются корректорами. Конечно, следует оговориться, что, с одной стороны, в виде опции их предлагали и раньше, к примеру, на "Пятерке" BMW E32 в некоторых комплектациях, а с другой, фары без корректоров встречаются и на автомобилях текущего модельного года, однако в целом эти устройства перестали быть редкостью в наше время

Типы корректоров фар

Глобально корректоры делятся на два типа – управляемые водителем и автоматические, работающие под контролем электроники.

Конструкция корректоров по типу привода фары также может быть разной – встречаются механические, гидравлические, пневматические и электромеханические устройства.

Какой именно тип корректора установлен в вашем автомобиле, зависит от марки, года выпуска и типа фары. Чаще всего встречаются электромеханические корректоры, которыми оборудовали автомобили с галогенными фарами производства середины девяностых и позже.

Электромеханический корректор

Устройство контролируется водителем, но прилагать к опусканию и подъему фар не требуется – водитель лишь крутит колесико потенциометра с нанесенными делениями и порядковыми номерами, расположенное, как правило, слева от рулевой колонки на панели приборов. Деления (пронумерованные, как правило, цифрами от 1 до 4) соответствуют уровню светотеневой границы – чем больше число, тем выше свет. Все расстояние от нижней до верхней точки подъема может быть разделено на равные отрезки, каждому из которых соответствует деление, и в этом случае фары поднимаются и опускаются пошагово, либо регулировка может осуществляться плавно. В таком случае фары могут быть отрегулированы по высоте достаточно точно.

В конструкцию каждой блок-фары входит так назваемый мотор-редуктор, состоящий из электродвигателя, червячного редуктора и платы с деталями. Выполненная на плате электронная схема регулирует работу устройства. Мотор-редуктор превращает постоянное вращение вала электродвигателя в поступательное движение штока, регулирующего высоту фары. На конце штока имеется подвижное шарнирное соединение, входящее в ответную часть на корпусе отражателя. Мотор поднимает и опускает шток, а тот в свою очередь давит на корпус отражателя и поднимает или опускает фару.

Гидромеханический корректор

Работа гидромеханических корректоров в целом схожа с работой электромеханических. Разница заключается лишь в типе привода и в отсутствии электроники. Как и в случае с электромеханическим корректором, водитель вращает колесико с делениями, расположенное на передней панели. Однако при этом он совершает механическую работу, то есть пальцами воздействует на фары, передвигая их, хотя сила пальцев многократно усилена гидравликой. Привод фар механический, а вот усилие пальцев водителя передается на механизм посредством заключенной в трубки жидкости.
Механический корректор

Отличается от гидромеханического только отсутствием гидравлической системы. В данном виде корректора усилие, развиваемое пальцами водителя, передается механическим путем (через вращающийся трос) и усиливается редуктором. Именно благодаря редуктору удается передвигать вверх-вниз фары (для их движения требуется немало сил).

Автоматический корректор

От электромеханического приводом не отличается, зато управляет устройством уже не человек, а электроника. Изменение наклона фар, оснащенных автоматическим электромеханическим корректором, происходит без участия человека. Компьютерная программа, которую выполняет процессор устройства, регулирует наклон фар в соответствии с заданным алгоритмом. К примеру, повышает пучок света, если автомобиль катится под гору, или опускает его, если на равнине в дороге попался едущий на встречу другой автомобиль.

В определении необходимой высоты электронный контроллер на основе микропроцессора опирается на телеметрические показания, полученные от датчиков дорожного просвета.

Для корректности показаний на кузове устанавливаются несколько датчиков – обычно один или два впереди (слева и справа), и третий в хвостовой части. Работа датчиков, использующихся в современных моделях, основана на эффекте Холла, на более старых автомобилях применялись потенциометрические датчики.

Корпус датчика прикреплен к кузову и соединен гибкой тягой с рычагом подвески. Таким образом ходы подвески регистрируются, и результатом их изменения становятся синхронно изменяющийся выходной сигнал датчика. Электронный контролер следит за изменениями сигнала датчиков и соизмеряет их с заложенными в памяти параметрами. В зависимости от этих параметров исполнительным механизмам фар (схожим по конструкции с аналогичными механизмами, применяющимся в электромеханическом корректоре) отдается приказ поднять или опустить линзу, меняя высоту пучка света.

В более бюджетной конструкции для получения данных используется один ультразвуковой датчик, прикрепленный к хвостовой части кузова на шарнирном подвесе и сканирующий расстояние до дороги.

Следует отдельно упомянуть о том, что согласно ГОСТ Р 51709-2001 в настоящее время автоматическим корректором света должны быть оснащены все современные автомобили с установленными ксеноновыми фарами. Соответственно, если владелец автомобиля устанавливает ксеноновые фары самостоятельно, он должен заказать установку автоматических корректоров света фар, чтобы не нарушать действующее законодательство.

Что такое корректоры фар и как они могут спасти жизнь?

Почти в каждом новом автомобиле теперь есть неприметное приспособление в виде колесика слева от рулевой колонки. Оно имеет несколько положений и регулирует наклон фар. Однако мало кто пользуется этой системой. Действительно ли эта опция бесполезна и продавцы зря берут за нее деньги или с ее помощью открываются какие-то неведомые способности автомобиля, о которых мы просто не знаем?

корректоры фар

С отверткой под капотом

Корректоры фар очень важны и являются обязательными для многих типов головного света. Ими оснащаются ксеноновые прожекторы и матричные лампы. И забывчивость автомобилистов по отношению к этому устройству может привести к неприятным последствиям, ведь корректоры необходимы для предотвращения ослепления водителей встречных машин.

Дело в том, что при неравномерной загрузке автомобиля происходит перекос кузова. Если в багажник уложить 400 кг груза, то корма просядет на несколько сантиметров и фары начнут светить вверх. Ближний свет окажется приподнятым, и световой пучок будет попадать в область лобового стекла встречных машин. Другими словами, фары будут слепить водителей. Если с задранными фарами отправляться в ночную поездку, то каждый встречный автомобиль будет моргать в лицо, требуя прекратить ослепление. Игнорировать такие сигналы нельзя.

К примеру, если на заднее сиденье сели три человека, а в багажнике навалены их чемоданы, то колесико регулятора надо повернуть во второе положение. Световой пучок опустится и не будет выбегать за линию горизонта. Как только люди выходят из машины и водитель остается один, вес транспортного средства снижается, подвеска поднимается и фары естественным образом светят вниз. То есть их потребуется вернуть в нулевое положение. Корректоры фар очень удобны для такси и владельцев автомобилей, у которых большие семьи. Ежедневный развоз членов семьи по городу предполагает частые коррекции светового пучка.

Забывать нельзя

Всего у колесика корректора фар есть 4 позиции.

0 соответствует минимальной загрузке, когда в салоне только один водитель и один пассажир на переднем кресле.

1 — в это положение фары нужно установить, когда в салоне путешествуют три человека, а их сумки лежат в багажнике.

2 — соответствует средней загрузке машины, которая наблюдается, если в салоне находятся четыре человека, а их сумки размещены в багажном отделении.

3 — соответствует максимальной загрузке машины в пределах штатных 500 кг. Обычно это 5 человек в салоне и полностью заполненный багажник.

Однако автоматические корректоры порой ломаются. Уязвимым местом таких фар являются датчики загрузки, которые часто врут. Поэтому ксенон задирается верх и слепит встречный транспорт, а это очень неприятно. Водитель встречного транспортного средства может потерять управление и выехать на середину дороги, что чревато аварией, Поэтому лучше не забывать о корректорах фар и всегда пользоваться ими в дальней дороге по ночным трассам.

Корректор фар

Здесь Вы найдете полезные советы о регулировании угла наклона автомобильных фар.

Нагрузка и колебания автомобиля относительно поперечной оси изменяют угол наклона фар. Это может привести к ослеплению других участников дорожного движения. Поэтому согласно закону необходимо использовать корректор наклона фар (КНФ). На этой странице Вы узнаете, как работают системы, доступные на рынке, и каким образом их можно проверить с помощью простых средств. Здесь также можно узнать о том, что делать в случае неисправности и что следует учитывать при регулировании фар с помощью автоматического КНФ.

Важное указание по технике безопасности
Следующая информация и практические советы были составлены HELLA для профессиональной помощи автомастерским. Информация, предоставленная на этом веб-сайте, должна применяться только соответствующим образом подготовленными специалистами.

Ручной корректор наклона фар

Автоматический корректор наклона фар

Советы по обращению с корректорами наклона фар

Неисправность корректора наклона фар

Проверка корректора наклона фар

Настройка корректора наклона ксеноновых фар

Обязательное использование корректора наклона фар

РУЧНОЙ КОРРЕКТОР ФАР : ПРИНЦИП ДЕЙСТВИЯ

Корректор наклона фар предназначен для регулирования высоты светотеневой границы в соответствии с нагрузкой транспортного средства. Это позволяет предотвратить ослепление водителей встречных транспортных средств при перегрузке автомобиля. Последние модели автомобилей оснащены ручными и автоматическими корректорами наклона фар. Если автомобиль оснащен ручным корректором наклона фар, водитель должен сам регулировать угол наклона фар с помощью переключателя. Имеются как пневматические, так и электрические системы.

Проблема заключается в том, что многие загруженные автомобили ослепляют другие транспортные средства, потому что их водители недостаточно проинформированы о возможностях регулирования и принципе действия корректора наклона фар своих автомобилей.

АВТОМАТИЧЕСКИЙ КОРРЕКТОР ФАР : ПРИНЦИП ДЕЙСТВИЯ

Конструкция автоматического корректора наклона фар

Эти системы КНФ выполняют свою задачу без помощи водителя. Существует две системы: квазистатический и динамический КНФ.

1 – фара, 2 – исполнительный элемент, 3 – датчик переднего моста, 4 – выключатель света, 5 – блок управления, 6 – датчик заднего моста, 7 – датчик частоты вращения, 8 – нагрузка

Квазистатический корректор наклона фар

Автоматические системы регулирования наклона фар бывают двух видов: квазистатический и динамический корректор наклона фар. Квазистатический КНФ корректирует изменения наклона только на основании изменения нагрузки.

Блок управления анализирует данные, полученные от датчиков переднего и заднего моста, сравнивает их с сохраненными заданными значениями и при необходимости соответствующим образом управляет сервоприводами фар.

Как правило, в данном случае используются те же сервоприводы, что и для ручного КНФ. На компактных автомобилях без значительных выступов колес эта система позволяет обойтись без датчика переднего моста, поскольку изменения угла наклона имеют место, прежде всего, только на заднем мосту. Кроме того, квазистатический КНФ работает с большим демпфированием, т. е. регулирует только длительные наклоны кузова. В комплектах HELLA для модернизации ксеноновых фар используется ультразвуковая система. В данном случае датчик измеряет прямое расстояние до дорожного полотна.

Динамический корректор наклона

На сегодняшний день на транспортных средствах, оснащенных ксеноновыми фарами, почти всегда устанавливаются динамические корректоры наклона фар, реагирующие на изменения наклона, например, вследствие ускорения или торможения.

На блок-схеме показана конструкция динамического корректора наклона фар. Блок управления рассчитывает заданные значения на основании данных датчика с учетом характеристик движения. В отличие от квазистатического КНФ в данном случае сервоприводы включаются за доли секунды. Для обеспечения такого быстрого реагирования в качестве исполнительных элементов фар преимущественно применяются шаговые двигатели.

Серводвигатель ручного и автоматического корректора наклона фар

В системах, которые в настоящее время предлагаются на рынке, используются электрические серводвигатели, которые (в 3-м поколении) имеют дополнительные функции (версия 3i).

HELLA предлагает оптимальные индивидуальные системные решения. Встраиваемые в фары серводвигатели, а также серводвигатели для наружного монтажа с ручной базовой настройкой и без нее доступны в версиях 12 В и 24 В. Благодаря полностью автоматизированному производству с высокими стандартами качества обеспечивается выпуск более 10 миллионов серводвигателей в год. Благодаря последовательному расширению сети международных представительств, стало возможным поставлять электроприводы потребителям из Кореи, Индии и Китая.

ISM (интеллектуальный шаговый двигатель)

Интеллектуальный шаговый двигатель объединяет в мехатронный модуль биполярный шаговый двигатель и силовые электронные устройства, обычно размещаемые в отдельном блоке управления. Основным компонентом двигателя ISM является интегрированная микросхема, которая реализует комплексное включение шагового двигателя, диагностику и коммуникацию с вышестоящей системой через коммуникационный модуль с интегрированным интерфейсом шины LIN.

Важными функциональными преимуществами интеллектуального шагового двигателя являются

  • микрошаговый режим управления (работа с низким уровнем шума и резонанса);
  • возможность диагностики,
  • улучшенная характеристика ЭМС,
  • полуавтономная обработка ошибок,
  • оптимизированная система проводных соединений.

HELLA прежде всего использует технологию ISM для систем с регулируемыми фарами. Наряду с использованием интеллектуального шагового двигателя в динамическом корректоре фар ими также оснащаются динамический адаптивный свет и валик модуля VARIOX®.

Блок управления автоматического и динамического корректора фар

С 1995 года блоки управления HELLA используются для автоматического и динамического корректора фар в автомобилях с ксеноновым светом.

Блоки управления нового поколения оснащены дополнительным выходом шины LIN и поэтому являются универсальным стандартным компонентом. Данные о величине прогиба датчиков мостов обрабатываются в блоке управления и преобразуются в управляющие переменные для регулирования угла наклона фар с помощью сложных алгоритмов. Модульная конструкция блоков управления позволяет комбинировать отдельные компоненты, такие как корпус, штекер, печатная плата или программное обеспечение, в соответствии с различными требованиями заказчика таким образом, чтобы обеспечить максимальную экономичность и гибкость. Благодаря интерфейсу шины CAN в конце линии производства транспортного средства блок управления может быть адаптирован к различным типам транспортных средств путем кодирования или программирования определенных параметров.

Индуктивный датчик положения кузова автомобиля

В целом ряде систем автомобиля, повышающих уровень безопасности и комфорта, таких как активная ходовая часть, регуляторы уровня, а также автоматический корректор наклона фар, необходимо определять соответствующее положение кузова автомобиля.

На печатной плате индуктивного датчика положения кузова автомобиля размещено несколько токопроводящих катушек, которые создают электромагнитное поле. Металлический ротор, подключенный к рычагу управления датчика, перемещается над этой печатной платой, что воздействует на электромагнитное поле. В зависимости от положения рычага управления датчика, изменение поля регистрируется дополнительными катушками, расположенными на печатной плате датчика, и обрабатывается специально разработанной ASIC.

С помощью этого датчика могут быть установлены различные диапазоны углов при постоянной высокой линейности. Индуктивный датчик моста передает как аналоговый сигнал, так и ШИМ-сигнал. Датчик работает с великолепной точностью полностью независимо от температуры. При этом нулевое положение датчика можно индивидуально изменять. Вследствие модернизации этого датчика выпущен новый индуктивный датчик, по окружности передающий постоянно повторяющийся ШИМ-сигнал, сжатый до 75 %. Таким образом, этот датчик может использоваться на различных платформах в качестве унифицированной детали. Различные монтажные положения и допуски компенсируются с помощью электронной юстировки в обрабатывающем блоке управления.

Следующим этапом разработок является дальнейшая оптимизация конструкционного пространства и улучшение выходного сигнала, реализуемого для ходовой части (датчик положения кузова автомобиля 2-го поколения).

Светить, а не слепить: что ломается в корректоре фар и почему многие его не чинят

Были же раньше времена: открыл корпус фары, открутил клапан ацетилена, поднёс спичку – и всё, свет есть. Главное, чтобы запаса карбида кальция и воды хватило. Сейчас времена другие. То лампочка перегорит, то блок розжига ксенона помрёт, то корректор фар откажет. Вроде бы все эти штуки призваны сделать жизнь проще и безопаснее, а на практике иногда получается обратное: тот же неисправный корректор может принести столько грусти, что мама не горюй. Кстати, а что может в нём сломаться и почему на каждой второй когда-то премиальной, а ныне просто двадцатилетней машине он не работает?

От ручного труда к электричеству

Как ни странно, корректоры фар бывают очень многих типов: от простых механических до странных пневматических и современных автоматических. А вот задача у них одна и та же – ограничивать высоту пучка света. Или, как говорят слишком умные люди, формировать светотеневую границу пучка света фар. Необходимость такого ограничения возникла в ходе совершенствования головной оптики автомобилей. Ослепить водителя встречного автомобиля шестивольтовой лампочкой, да ещё на скорости в 20-30 км/ч, было сложно. Но со временем свет становился всё лучше, скорости – выше, а участников движения – больше. Ослепление стало реальностью, и появилась необходимость с этой опасностью бороться.

Ford Model T Touring 1908–1910

Ещё в середине прошлого века на фары стали устанавливать механические регуляторы света. Предполагалось, что водители будут перед каждой поездкой оценивать нагрузку на автомобиль и регулировать каждую фару вручную. Само собой, водители забили на это хлопотное дело хромированные болты и ездили, как получится, да и сама система была далеко на на всех автомобилях. И только в 1990 году в Германии установка корректора фар была признана обязательной. Остальная Европа подтянулась к 1998-му году, и сейчас корректор уже давно перестал был опцией. Он обязателен в любом случае, причём если раньше его допускалось не ставить на машины с активной подвеской, обеспечивающей постоянное положение кузова независимо от нагрузки, то сейчас таких исключений нет. Более того, если на машине есть ксеноновая оптика, то согласно ГОСТ Р 51709-2001, машина в обязательном порядке должны быть оснащена автоматическим корректором света. Который, признаться, частенько не работает.

Ford Focus 2000

Самый распространённый тип корректора – электромеханический. Одна из его частей – это то самое колёсико в салоне с цифрами 1-4, которое мы крутим пальцами. Внутри фары стоит электромотор с червячной парой и толкателем, который и регулирует положение фары. Механизм теоретически вечный, но на практике его ресурс всё-таки ограничен: чаще всего ломается сам мотор-редуктор (как правило, изнашиваются пластиковые шестерёнки), могут сломаться и пластиковые детали тяги привода. Впрочем, это довольно надёжный механизм, и в основном его губит возраст.

Менее распространены гидромеханические корректоры, в которых исполнительная часть такая же, как у электромеханического, а вот привод – гидравлический. Такой корректор стоял, например, на многих наших ВАЗах. Поломки тут немного иные: чаще вытекает жидкость из гидравлики (там может использоваться и антифриз, и обычная незамерзайка). Откуда она потечёт – самому богу неизвестно. Могут лопнуть трубки, может протечь соединение – на старых Ладах возможно всё. Правда, и отремонтировать это чудо техники несложно.

Пневматический корректор сейчас не используют, зато очень распространён самый продвинутый корректор – автоматический. Вот тут неисправности свои, причём тоже самые современные.

Я сам!

Чем ярче начинали светить лампы, тем пристальнее приходилось следить за тем, чтобы они не слепили встречных водителей. Само собой, ни один ручной корректор не может предотвратить ослепление в случае, если машина проедет волну на асфальте. Даже если водитель – самый быстрый ковбой на Диком Западе и успеет крутануть ручку корректора, кузов уже десять раз вернётся в исходное положение до того, как корректор потихоньку опустит и затем опять поднимет пучок света. С ксеноновой оптикой за это время можно ослепить встречного так качественно, что ему придётся жать на тормоз, вставать на обочину и ждать, когда его испуганные глаза снова обретут способность что-нибудь видеть. Так что ни один ручной корректор тут не подходит – нужно что-то намного более быстро и, конечно же, автоматическое. Такие корректоры появились, и обычно их называют динамическими системами коррекции. Ну а если у машины оптика не ксеноновая, то ей достаточно будет иметь автокорректор попроще – квазистатический. В чём между ними разница?

У квазистатической системы есть одна существенная особенность: несмотря на то, что руками ничего постоянно крутить не требуется, скорость её работы приблизительно такая же, как у электромеханической или электрогидравлической: фары при необходимости медленно ползут вниз или вверх. Такая скорость недостаточна для того, чтобы компенсировать наклоны кузова при разгонах, торможениях или проездах дорожных неровностей. Поэтому для ксенона квазистатический автокорректор не подходит – ему надо что-то более быстродействующее.

Зато всем остальным эта система подходит лучше всего: она недорогая, просто устроенная и вполне способна автоматически регулировать направление пучка света при изменении загрузки кузова (грубо говоря, опускать его вниз, если задняя часть проседает под весом пассажиров или груза в багажнике).

Исполнительные механизмы там те же, что и в простых системах: мотор-редукторы и тяги, толкающие фару. Но вот управляется такая система иначе. В подвеске автомобиля установлены датчики положения кузова. В дорогих системах их может быть до трёх штук (по два на передний мост и один – на задний), но в самых простых он всего один – на задней оси. Дорожный просвет под передней осью меняется незначительно, и часто этим параметром пренебрегают, учитывая только то, насколько просел задний мост. В простой системе датчик состоит из двух половин, одна из которых закреплена на кузове, вторая – на подвижной части подвески. По изменению взаимного положения половин датчика ЭБУ делает вывод о положении кузова и при необходимости отдаёт команду исполнительному механизму изменить положение фар.

Наличие датчика положения кузова и объясняет тот печальный факт, что система частенько отказывается работать: датчик под машиной открыт всей грязи и реагентам и быстро ржавеет. Дальше бывает по-разному: иногда датчик просто ломается (потому что теряет возможность двигать своими половинками), а иногда у него сгнивают электрические разъёмы. В любом случае система работать уже не может. В подавляющем большинстве случаев отказа автокорректора (что динамического, что квазистатического) виноваты именно датчики положения кузова. Именно поэтому в некоторых продвинутых системах используют не механические датчики, а ультразвуковые, которые измеряют непосредственно расстояние над дорогой. Получается чуть дороже, но надёжнее.

Разумеется, если обе фары автомобиля с такой системой перестают регулироваться одновременно, в первую очередь нужно проверить датчики. А если только одна – то механизм корректора отдельной фары.

Концепция системы динамического автокорректора практически та же: система датчиков, информация от которой поступает блоку управления, и исполнительный механизм. Вот только если мотор-редуктор в квазистатической системе стоит так же, как и в электромеханической (отдельно от фары), то в динамической системе привод регулировки обычно осуществляется шаговым электромотором, который делают частью фары. Такая конструкция позволяет менять угол наклона светового пучка практически мгновенно. Правда, и затраты блока управления на обработку информации с датчиков положения кузова намного серьёзнее: если опрос датчиков квазистатического автокорректора может производиться и раз в полторы минуты, то для динамической системы это нормально сделать шесть раз в одну секунду. И это вынужденная мера: иначе пропадёт всякий смысл в скорости работы привода регулировки пучка света, и машина не сможет сохранять светотеневую границу пучка света в пределах нормы.

Поломки в этой системе обычно те же, что и в предыдущей: чаще всего отказывают датчики. И это даже не самый плохой вариант развития событий, потому что механизм регулировки фар тут намного дороже, и проще заменить датчик.

Кроме того, в работе этой системы часто задействованы датчики ABS, которые нужны для определения реальной скорости автомобиля. И если участвующий в работе датчик откажет, системы тоже перестанет работать должным образом.

Если в ремонте простейших электрогидравлических корректоров ВАЗа иногда можно было обойтись изолентой, то даже при диагностике современной динамической системы автокорректора часто невозможно обойтись без сканера. Впрочем, если очень хочется всё отремонтировать самостоятельно, можно попробовать обойтись одним мультиметром: проверить поочерёдно сигналы с датчиков положения кузова и проводку от них до ЭБУ. Вполне вероятно, что даже такая несложная диагностика поможет определить, что именно сломалось.

Конечно, трудно представить владельца нового BMW, который ползает под машиной с тестером. Но мало ли: ремонт сейчас может быть слишком дорогим даже для такого успешного человека.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *