Цилиндры и блок-картеры автомобильных двигателей
Цилиндр представляет собой одну из главных деталей поршневого двигателя. Внутренняя полость цилиндра составляет основу рабочей полости, в которой осуществляются все тепловые процессы, связанные с преобразованием тепловой энергии топлива в механическую работу.
Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними положениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.
Цилиндр работает в условиях переменных давлений в надпорш-невой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа (абразивного, коррозионного и некоторых разновидностей эрозии), уменьшающих срок службы цилиндров (Износ цилиндров автомобильных двигателей является следствием комплексного воздействия на стенки многочисленных физических и химических быстротекущих процессов, которые по характеру проявления разделяются на три основных вида износа: эрозивный, возникающий вследствие механического истирания, схватывания и других разрушающих процессов при непосредственном контакте металлических трущихся поверхностей; коррозионный, возникающий при всякого рода окислительных процессах на поверхностях трения; абразивный, вызывающий разрушение поверхностей трения при наличии между ними твердых или, как говорят, абразивных частичек, в том числе и продуктов износа). Материалы, применяемые для изготовления цилиндров, должны обладать хорошими литейными свойствами и легко обрабатываться на станках.
В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с небольшими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь и алюминиевые сплавы.
Цилиндры из алюминиевых сплавов с внутренней стороны покрывают слоем пористого хрома толщиной 0,1—0,15 мм. Слой пористого хрома, имеющий канальчатую поверхность, хорошо удерживает смазку и обладает повышенной износостойкостью. Такой метод изготовления легких износостойких цилиндров используется иногда для мотоциклетных и автомобильных двигателей малого литража.
При использовании более дорогих материалов цилиндры чаще всего делают комбинированными, т. е. состоящими из двух металлов. Для внутренних стенок, образующих рабочую поверхность цилиндра, в этих случаях применяют наиболее износостойкие материалы. Например, сталь или высоколегированный аустенитный чугун, содержащий 14—15% никеля, 6—7% меди и 2—4% хрома. Аустенитный никельмедистохромистый чугун-нирезист отличается от перлитного чугуна высокой коррозионной стойкостью, хорошей сопротивляемостью истиранию при ограниченной смазке и другими положительными свойствами.
Чтобы уменьшить потери на трение и обеспечить необходимое уплотнение надпоршневой полости, внутренние стенки цилиндров тщательно обрабатывают. По возможности им придают строго цилиндрическую форму, а рабочую поверхность доводят до высокой степени чистоты. Внутреннюю поверхность стенок называют зеркалом цилиндра.
Высокая температура газов в надпоршневой полости цилиндра и сравнительно большое количество тепла, выделяющегося при трении поршня и поршневых колец о зеркало цилиндра, вызывают интенсивный нагрев стенок, вследствие чего возникает необходимость в постоянном отводе от них тепла. Практически это достигается непрерывным охлаждением стенок цилиндров жидкостью или воздухом. Даже кратковременное прекращение такого охлаждения связано с аварией цилиндра и выходом из строя двигателя. Быстро наступающий перегрев неохлаждаемых стенок приводит к «схватыванию» трущихся поверхностей или к заклиниванию поршня в цилиндре, возможному обрыву шатуна и другим большим разрушительным последствиям.
Температура стенок цилиндров на прогретом двигателе поддерживается в пределах 100—150°С. Более высокую температуру имеют при этом стенки верхней зоны цилиндров, омываемые наиболее горячими газами. В двигателях с воздушным охлаждением отдельные участки верхней зоны цилиндров нагреваются до 170— 180°С, а средняя температура их стенок всегда бывает выше, чем при жидкостном охлаждении.
Повышенный нагрев стенок приводит к излишнему подогреву поступающего в цилиндры свежего заряда и уменьшению его весового содержания. Двигатели развивают при этом заметно меньшую мощность. Однако нельзя и переохлаждать цилиндры. При температуре ниже 100°С на стенках возможна конденсация паров воды. А так как в продуктах сгорания наряду с парами воды и другими химическими соединениями содержится некоторое количество сернистого газа, то создаются благоприятные условия для образования серной кислоты, коррозирующей стенки цилиндров, вследствие чего износ их резко возрастает.
В зависимости от способа охлаждения конструкция цилиндров и всего двигателя приобретает свои характерные особенности.
Цилиндры двигателей воздушного охлаждения отливают индивидуально, а для увеличения теплоотвода наружная поверхность их оребряется (рисунок). Следовательно, при воздушном охлаждении цилиндр, строго говоря, состоит из двух конструктивных элементов: гильзы или, как ее называют иногда, втулки и оребрения. Размер ребер и межреберных промежутков выбирают из условий, чтобы оребрение оказывало возможно меньшее сопротивление потоку охлаждающего воздуха и в то же время было достаточно развитым и обеспечивало нужную интенсивность теплоотвода. В существующих конструкциях площадь поверхности оребрения цилиндра примерно в 10 раз превышает площадь его зеркала в зоне оребрения.
Оребряемой поверхности гильзы, придают цилиндрическую или коническо-цилиндрическую форму. Чаще применяются гильзы с цилиндрической средней частью и с конической формой ее периферийных зон. Это способствует выравниванию температуры как по окружности, так и по высоте цилиндра, в частности уменьшает перепад температур в зоне перехода от оребренной части цилиндра к неоребренной. Утолщение стенок гильзы в верхней и нижней ее зонах повышает также общую жесткость цилиндра, а уменьшение толщины стенок гильзы в средней части увеличивает сечение воздушных каналов, что способствует лучшему теплоотводу.
В двигателях с воздушным охлаждением применяют как цельнометаллические, так и комбинированные цилиндры. Цельнометаллические цилиндры изготовляют из чугуна, реже их делают стальными, а в малых двигателях применяют также алюминиевые сплавы с хромированной поверхностью зеркала. Ребра отливают вместе с гильзой или нарезают на станках. Чаще используют первый, наиболее простой и экономически выгодный метод. Комбинированные цилиндры представляют собой чугунную или стальную основу с ребрами из алюминиевых сплавов, получаемых методом литья, или же алюминиевую оребрснпую основу с запрессованной в нее, например, чугунной гильзой . В таких цилиндрах высокая износостойкость сочетается с хорошим теплоот-водом, так как теплопроводность алюминиевых сплавов в 3—4 раза выше теплопроводности чугуна. Более высокими качествами обладают биметаллические цилиндры, получаемые методом заливки ребер, обеспечивающим монолитность их соединения с основой цилиндра.
Многоцилиндровые двигатели с воздушным охлаждением снабжают общим для всех цилиндров картером. Примером здесь может служить двигатель автомобиля «Запорожец».
Цилиндры двигателей с жидкостным охлаждением в отличие от рассмотренных оребрениых изготовляют с двойными стенками, что значительно усложняет их конструкцию. Внутренние стенки образуют у них гильзу цилиндра, а внешние более тонкие— его рубашку. Стенки рубашки охватывают гильзовую часть цилиндра так, что между ними образуется полость, используемая для циркуляции охлаждающей жидкости.
Из соображений облегчения ремонта и увеличения срока службы цилиндров с жидкостным охлаждением их в большинстве случаев изготовляют комбинированными, с короткими вставками или со вегавками па всю длину зеркала цилиндра и с легкосъемными гильзами.
Цилиндр и поршень как основные элементы автомобильного двигателя
Цилиндр и поршень являются одними из основных деталей любого двигателя внутреннего сгорания. Нижняя плоскость ГБЦ, днище поршня и стенка цилиндра образуют замкнутую полость, где происходит сгорание топливно-воздушной смеси. Поршень, который находится в цилиндре, преобразует энергию образовавшихся газов в поступательно движение, тем самым приводя в движение коленчатый вал.
Цилиндр и поршень прирабатываются в ходе эксплуатации автомобиля, обеспечивая эффективность и наилучшие режимы работы двигателя.
Что такое цилиндр и поршень?
Современные двигатели могут иметь от 2 до 16 цилиндров, которые объединены в блок цилиндров. От количества цилиндров зависит мощность ДВС.
Внутренняя часть цилиндра является его рабочей поверхностью и называется гильзой, а внешняя, которая составляет единое целое с корпусом блока – рубашкой. По каналам рубашки циркулирует охлаждающая жидкость.
Внутри цилиндра совершает возвратно-поступательное движение поршень. Он передает энергию давления газов на шатун коленвала, герметизирует камеру сгорания и отводит из нее тепло. Состоит поршень из днища (головки), уплотняющих колец и направляющей части (юбки).
Поршни для бензиновых двигателей имеют плоское днище. Они меньше нагреваются при работе и проще в изготовлении. Они могут обладать специальными канавками, которые способствуют полному открытию клапанов. В дизельных двигателях поршни имеют специальную выемку заданной формы на дне. Она служит для того, чтобы воздух, поступающий в цилиндр, лучше смешивался с топливом.
Плотность соединения поршня и цилиндра обеспечивают поршневые кольца. Их расположение и количество зависит от типа и назначения двигателя. Наиболее часто встречающееся исполнение – одно маслосъемное и два компрессионных кольца.
Компрессионные кольца предотвращают попадание газов в картер двигателя из камеры сгорания и отводят тепло к стенкам цилиндра от головки поршня. По форме они бывают коническими, бочкообразными и трапециевидными.
Верхнее компрессионное кольцо изнашивается быстрее других, поэтому его наружная поверхность подвергается напылению молибдена или пористому хромированию. Благодаря такой подготовке первое кольцо становится более износостойким и лучше удерживает моторное масло. Другие уплотняющие кольца покрываются слоем олова для улучшения приработки к цилиндрам.
Маслосъемное кольцо служит для удаления излишков масла со стенок цилиндра, тем самым предотвращая их попадание в камеру сгорания. Через специальные отверстия в стенках поршня масло попадает внутрь последнего, а затем направляется в картер.
Направляющая часть (юбка) поршня может быть конусообразной или бочкообразной. Такая конструкция позволяет компенсировать расширение при воздействии высоких температур. На юбке находится отверстие с двумя бобышками, где крепится поршневой палец трубчатой формы, соединяющий поршень с шатуном.
Палец поршня может устанавливаться следующим образом:
Свободный ход в бобышках поршня и головке шатуна (плавающие пальцы)
Вращение в бобышках поршня и фиксация в головке шатуна
Вращение в головке шатуна и фиксация в бобышках поршня
Шатун соединяет поршень с коленвалом. Его верхняя головка движется возвратно-поступательно, а нижняя вращается совместно с шатунной шейкой коленчатого вала, стержень совершает сложное колебательное движение. При работе шатун подвергается растяжению, изгибу и сжатию, поэтому его производят жестким и прочным, а, чтобы уменьшить инерционные силы – легким.
Из чего изготавливают цилиндры и поршни?
Цилиндры изготавливают из чугуна или стали с различными присадками. Это нужно для того, чтобы детали могли выдержать высокие нагрузки. Сегодня блоки цилиндров чаще всего производят из алюминия, а внутренние части цилиндров – из стали, благодаря чему вес конструкции снижается.
Поршни внутри цилиндра двигаются с высокой скоростью и подвержены воздействию высоких давлений и температур. Изначально для производства этих деталей использовался чугун, но с развитием технологий основным материалом для поршней стал алюминий. Это позволило обеспечить меньшую нагрузку на поршни, лучшую теплоотдачу и рост мощности ДВС.
На современных автомобилях, особенно с дизельными двигателями, используются сборные стальные поршни. Они весят меньше алюминиевых, а за счет меньшей компрессионной высоты позволяют использовать шатуны большей длины, тем самым снижая боковые нагрузки в паре «цилиндр-поршень».
Для производства поршневых колец используется высокопрочный серый чугун с добавлением хрома, молибдена, никеля или вольфрама. Эти материалы улучшают приработку элементов и обеспечивают их высокую износо- и термостойкость.
Некоторые производители автокомпонентов для снижения потерь на трение покрывают боковую поверхность поршней специальными материалами на основе графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается и ему требуется восстановление.
Одним из самых эффективных средств для восстановления антифрикционного слоя или нанесения материала на новые поршни является покрытие поршней MODENGY для деталей ДВС. Состав на основе высокоочищенного дисульфида молибдена и графита имеет практичную аэрозольную упаковку с оптимальными параметрами распыления.
Материал равномерно наносится на юбки поршней, не требует высоких температур для полимеризации и создает на поверхности сухую смазочную пленку, которая в течение длительного времени снижает износ и препятствует образованию задиров.
Для подготовки поверхностей перед нанесением покрытия рекомендуется провести их обработку Специальным очистителем-активатором MODENGY. Он убирает все загрязнения с деталей и обеспечивает прочное сцепление покрытия с основанием.
Охлаждение ЦПГ
При работе двигателя выделяется огромное количество тепла. Например, температура сгоревших газов может достигать +2000 °C. Именно поэтому цилиндро-поршневая группа нуждается в эффективном охлаждении.
В современных двигателях система охлаждения может быть жидкостной или воздушной. В первом случае цилиндры ДВС покрыты снаружи большим количеством специальных ребер, которые охлаждаются искусственно созданным или встречным потоком воздуха.
Жидкостное охлаждение подразумевает охлаждение цилиндров при помощи охлаждающей жидкости, которая циркулирует в толще блока снаружи цилиндров. Нагретые элементы отдают часть тепла ОЖ, которая затем попадает в радиатор, охлаждается и заново поступает к цилиндрам.
Система смазки цилиндров
Если внутри цилиндра отсутствует смазочный материал, поршень будет заклинивать, что со временем приведет к поломке двигателя. Для удержания моторного масла на внутренних поверхностях цилиндров на них наносят микросетку при помощи хонингования.
Благодаря этому на стенках всегда находится некоторое количество масла, что снижает трение между поршнем и цилиндром, а также способствует отведению излишков тепла внутри ЦПГ.
Неисправности при эксплуатации
Даже, если эксплуатация автомобиля была правильной и все жидкости менялись вовремя, со временем все равно могут возникнуть проблемы с цилиндро-поршневой группой. Их основная причина заключается в сложных условиях работы ЦПГ.
Высокие нагрузки и температуры приводят к:
Деформации посадочных мест под гильзу
Разрушению, залеганию, закоксовыванию колец
Задирам на юбках поршней из-за сужения зазора между поршнем и цилиндром
Возникновению пробоин, трещин, сколов на рабочих поверхностях цилиндров
Оплавлению или прогару днища поршней
Различным деформациям на теле поршней
Эти и другие неисправности ЦПГ неизбежно возникают при перегреве ДВС, который может быть вызван неисправностью термостата, помпы или разгерметизацией системы охлаждения, сбоями в работе вентилятора охлаждения радиатора, самого радиатора или его датчика.
Определить проблемы в работе цилиндро-поршневой группы можно отметив увеличение расхода масла, ухудшение запуска двигателя, снижение мощности, возникновение стука и шума при работе ДВС. Подобные моменты не следует игнорировать, так как неисправности в ЦПГ неизбежно приведут к дорогостоящему ремонту.
Точно определить состояние поршней и цилиндров позволяет разборка ЦПГ, а также осмотр других систем автомобиля, например, воздушного фильтра. Помимо этого, в ходе диагностики производится замер компрессии в цилиндрах, берутся пробы масла из картера и т.п.
Ресурс ЦПГ зависит от типа двигателя, его режима эксплуатации, сервисного обслуживания и других параметров. В среднем для отечественных автомобилей он составляет около 200 тыс. км, для иномарок – до 500 тыс. км. Существуют так называемые «двигатели-миллионники», ресурс которых может превышать 1 млн. км пробега.
Износ цилиндров определяется при помощи специального прибора – индикаторного нутрометра. Сколы и трещины на стенках заваривают или заделывают эпоксидными пастами.
Новые поршни подбираются по массе и диаметру к гильзам, а поршневые пальцы – к втулкам верхних головок шатунов и поршням. Шатуны предварительно проверяют на предмет повреждений и при необходимости восстанавливают или заменяют.
1. Цилиндры
Цилиндр мотоциклетного двигателя служит для направления движения поршня.
Цилиндр представляет собой отливку. Его внутренняя шлифованная поверхность называется зеркалом. Цилиндр обычно имеет фланец, с помощью которого он прикрепляется к картеру двигателя. Под фланцем выполнен направляющий поясок, которым цилиндр устанавливается в отверстие картера. У двигателей воздушного охлаждения на внешней поверхности цилиндра расположены ребра, увеличивающие поверхность охлаждения. У двигателей жидкостного охлаждения цилиндр окружен рубашкой, служащей для протекания жидкости, охлаждающей горячие стенки цилиндров. Сверху цилиндр закрыт головкой, в которой расположена камера сгорания. Головка также снабжена или ребрами, увеличивающими поверхность охлаждения головки, или рубашкой для охлаждающей жидкости.
В процессе работы двигателя цилиндр подвергается большим силовым нагрузкам в результате резко изменяющегося давления газов. При сгорании рабочей смеси газы давят на головку цилиндра, стремясь таким образом оторвать его от картера. Кроме того, поршень при своем перемещении в цилиндре опирается на его зеркало, что вызывает боковую нагрузку на цилиндр и износ его внутренней поверхности.
Цилиндр двигателя подвергается также значительным температурным нагрузкам, так как внутренние стенки его соприкасаются с горячими газами. Больше всего температурным нагрузкам подвергается головка цилиндра, в которой происходит сгорание рабочей смеси и которая больший период времени омывается горячими газами. Стенки цилиндра подвержены температурным нагрузкам в меньшей степени, так как горячие газы могут соприкасаться с ними лишь по мере перемещения поршня к нижней мертвой точке в процессе рабочего хода. Кроме того, при перемещении поршня на такте выпуска от нижней мертвой точки к верхней мертвой точке поверхность соприкосновения горячих газов с зеркалом цилиндра постепенно уменьшается. Таким образом, на цилиндр двигателя действуют механическая и тепловая нагрузки. Поэтому цилиндры должны обладать достаточной прочностью. Они выполняются из чугуна, или чугунная гильза цилиндра имеет алюминиевое оребрение (рис. 16).
Рис. 16. Цилиндр с алюминиевым оребрением.
Цилиндры могут быть выполнены или отдельно, тогда каждый цилиндр крепится к картеру двигателя индивидуально, независимо один от другого, или в одном блоке.
Отдельное выполнение каждого цилиндра имеет то преимущество, что при повреждении одного из цилиндров он может быть легко заменен. Кроме того, отливка отдельных цилиндров более проста в производстве.
Блочное расположение применяется в том случае, когда необходимо при линейном расположении цилиндров установить их возможно ближе один к другому. Достоинство блочного расположения цилиндров по сравнению с отдельно выполненными заключается в большой их жесткости при меньшем весе. Недостатком такого расположения является большая сложность изготовления цилиндров и необходимость замены всего блока при повреждении одного из цилиндров.
Наиболее просты в изготовлении цилиндры, у которых клапаны расположены в головке (рис. 17).
Рис. 17. Цилиндр четырехтактного двигателя с верхним расположением клапанов.
В этом случае цилиндр имеет ребра, поверхность которых увеличивается к головке, фланец для крепления цилиндра к картеру и направляющий поясок. Ребра цилиндра размещены симметрично и только для размещения штоков системы распределения в ребрах сделаны вырезы. В верхней плоскости цилиндра иногда имеется выступающий поясок для посадки уплотняющей прокладки головки цилиндра и отверстия для ввертывания болтов, крепящих головку.
На рис. 18 изображен цилиндр четырехтактного двигателя мотоцикла М-72.
Рис. 18. Цилиндр двигателя мотоцикла М-72: 1 — фланец цилиндра; 2 — впускной патрубок цилиндра; 3 — гнездо клапана; 4 — выпускной патрубок цилиндра.
Гнезда клапанов 3 и патрубки 2 и 4 отлиты вместе с цилиндрами. Вместе с фланцем 1 цилиндра выполнена верхняя часть клапанной коробки, в которой расположены пружины клапанов. Во фланцах цилиндров сделано шесть отверстий для шпилек, соединяющих цилиндры с картером двигателя. На фланце левого цилиндра у направляющего пояска имеется кольцевая выточка, по которой масло из масленой магистрали поступает для смазки верхней части зеркала цилиндра. Кольцевая выточка сообщается с зеркалом цилиндра через три косых сверления в верхней части выточки.
На рис. 19 показан цилиндр двухтактного двигателя мотоцикла К1Б.
Рис. 19. Цилиндр двухтактного двигателя (разрез).
Его выполнение усложнено наличием впускных и выпускных окон и продувочных каналов. В нижней части зеркала цилиндра имеется фаска, облегчающая ввод поршня с кольцами, и выемка для шатуна.
Крепление цилиндров к картеру двигателя осуществляется, как правило, двумя способами:
1) фланец цилиндра крепится шпильками, ввернутыми в картер Двигателя;
2) цилиндры двигателя крепятся силовыми шпильками, проходящими через головку цилиндра.
Крепление цилиндров двигателя мотоцикла М-72 осуществляется шпильками. На боковых стенках картера двигателя расположены плоскости крепления цилиндров. На каждой плоскости в тело картера ввернуты шесть шпилек. Перед установкой цилиндра на плоскость устанавливается уплотнительная прокладка. Затем на шпильки надевается фланец цилиндра и закрепляется гайками. Достоинством этого способа крепления является простота изготовления крепежных деталей и легкость монтажа цилиндра. Головка цилиндра привертывается непосредственно к цилиндру восемью болтами. Недостаток такого крепления цилиндра заключается в том, что в процессе сжатия и особенно сгорания рабочей смеси газы, действуя на головку цилиндра, а через нее и на цилиндр, стремятся оторвать его от картера. Таким образом, во время работы двигателя цилиндры подвергаются большим переменным нагрузкам.
В плоскость алюминиевого картера двигателя мотоцикла M1А ввернуты четыре силовые шпильки, верхняя часть которых имеет резьбу. В эти шпильки свободно входят отверстия ребер цилиндра двигателя, уплотнительной прокладки и головки цилиндра. После этого на силовые шпильки навертываются гайки. В этом случае цилиндр оказывается зажатым между головкой цилиндра и картером двигателя и сам непосредственно к картеру не присоединяется. Достоинство этого способа крепления заключается в том, что головка цилиндров связана непосредственно с картером и поэтому цилиндры двигателя разгружены от осевых усилий, возникающих от действия давления газов на головку цилиндра. Недостатком этого способа крепления является некоторое усложнение в производстве деталей крепления.
Головки цилиндров мотоциклетных двигателей изготовляются обычно из алюминия и только в редких случаях из чугуна. Алюминиевые головки имеют то преимущество перед чугунными, что, обладая меньшим весом, они лучше отводят тепло, не коробятся и не растрескиваются при неравномерном нагреве их во время работы двигателя.
Головки цилиндров воздушного охлаждения имеют развитое оребрение, так как в процессе работы двигателя через стенки головок отводится максимальное количество тепла. Головки выполняются для каждого цилиндра отдельно или для двух цилиндров вместе.
В головке цилиндров имеется камера сжатия. Она должна обеспечивать хорошее наполнение цилиндра двигателя рабочей смесью, хорошее распространение пламени, без детонационного сгорания, и минимальные потери тепла.
В основном все камеры сжатия мотоциклетных двигателей можно разделить на три группы: полусферические, шатровые и вихревые.
На рис. 20 показана полусферическая камера сжатия двухтактного двигателя мотоцикла М1А.
Рис. 20. Головка цилиндра двигателя мотоцикла М1А с полусферической камерой сжатия: 1 — головка цилиндра; 2 — камера сжатия.
Полусферическая камера является наилучшей по своей форме, так как она обладает меньшей поверхностью отвода тепла к ребрам. Кроме того, в полусферической камере путь распространения пламени наиболее короткий.
У четырехтактных двигателей полусферические камеры обеспечивают хорошее наполнение цилиндров двигателя горючей смесью, так как горючая смесь поступает из карбюратора в цилиндр по наиболее прямому пути. Но полусферическая камера четырехтактных двигателей имеет более сложное устройство вследствие того, что в ней, кроме свечи, должны быть расположены клапаны.
Это в свою очередь усложняет привод к клапанам, тем более, что при полусферической камере клапаны расположены относительно друг друга под некоторым углом.
Шатровые камеры сжатия (рис. 21) по своей форме очень близки к полусферическим.
Рис. 21. Цилиндр с шатровой камерой сжатия.
Достоинство шатровых камер заключается в том, что в них обеспечивается удобное расположение клапанов максимального диаметра.
Полусферические и шатровые камеры имеют наибольшее распространение на современных мотоциклах, незначительная сложность их производства окупается высокой мощностью двигателей в результате хорошего наполнения цилиндров и хорошего использования тепла в камере сжатия.
Для четырехтактных двигателей дорожных и тяжелых мотоциклов применяется вихревая камера сжатия (рис. 22).
Рис. 22. Цилиндр с вихревой камерой сжатия.
Она расположена в стороне от цилиндра, над клапанами. Гнезда и направляющие втулки клапанов выполнены в теле цилиндра сбоку. При таком расположении клапанов горючая смесь, поступающая из карбюратора через клапан в камеру сжатия снизу вверх, после входа туда резко меняет свое направление и идет из камеры сжатия в цилиндр уже сверху вниз. При такой форме камеры увеличивается сопротивление горючей смеси на входе в цилиндр двигателя и, следовательно, уменьшается наполнение цилиндра. Достоинство этой камеры заключается в том, что пути распространения пламени удлиняются, сгорание рабочей смеси несколько замедляется и двигатель работает более мягко. Кроме того, при небольшом зазоре (2–3 мм) между днищем поршня и стенкой камеры сжатия обеспечивается охлаждение тонкого слоя рабочей смеси, находящейся в этом зазоре и наиболее удаленной от свечи. Это уменьшает способность рабочей смеси к детонационному сгоранию, так как охлажденная в зазоре рабочая смесь к моменту сгорания не успевает образовать с кислородом воздуха нестойкие соединения, сгорающие со взрывной скоростью.
Для уплотнения между головкой и плоскостью цилиндра устанавливаются прокладки, которые препятствуют сообщению с атмосферой в стыке плоскостей головки и цилиндра. Форма этих прокладок зависит от формы плоскости соприкосновения головки и цилиндра. Для изготовления прокладок применяются различные материалы. В частности, на двигателе мотоцикла М-72 прокладка выполнена из мелкой латунной сетки, в которую вплетены волокна асбеста. Перед установкой прокладка покрывается порошком графита, чтобы волокна асбеста не прилипали к плоскости головки и цилиндра. В настоящее время на двигателе мотоцикла М-72 применяется прокладка из алюминия. На некоторых мотоциклетных двигателях применяется прокладка из красной меди. Для увеличения упругости и лучшего уплотнения зазора на прокладке выштампованы канавки.
Что находится в цилиндре?
Поршень, который находится в цилиндре, преобразует энергию образовавшихся газов в поступательно движение, тем самым приводя в движение коленчатый вал. Цилиндр и поршень прирабатываются в ходе эксплуатации автомобиля, обеспечивая эффективность и наилучшие режимы работы двигателя.
Плоские фигуры, образованные пересечением цилиндрической поверхности с двумя параллельными плоскостями, ограничивающими цилиндр, называются основаниями этого цилиндра. Часть цилиндрической поверхности, находящаяся между плоскостями оснований, называется боковой поверхностью цилиндра.
Цилиндром вращения, или прямым круговым цилиндром (часто под цилиндром подразумевают именно его) называется цилиндр, который можно получить вращением (то есть тело вращения) прямоугольника вокруг одной из его сторон, содержащая которую прямая в таком случае будет осью этого цилиндра и его осью симметрии.
У такого цилиндра имеется ось симметрии. Прямой круговой цилиндр можно описать, как объёмного фигуру, образующуюся вращением прямоугольника вокруг своей стороны на 360°. Определение. Радиус цилиндра r — это радиус основания цилиндра.
Объём цилиндра : где r — радиус основы, h — высота цилиндра, d — диаметр основы. Формула. Площадь ,боковой поверхности цилиндра : Формула. Полная площадь поверхности цилиндра : Наклонный цилиндр — цилиндр, у которого образующие не перпендикулярно основам цилиндра (Рис.3 — наклонный круговой цилиндр).
Что находится внутри цилиндра двигателя?
Внутренняя часть цилиндра является его рабочей поверхностью и называется гильзой, а внешняя, которая составляет единое целое с корпусом блока – рубашкой. По каналам рубашки циркулирует охлаждающая жидкость. Внутри цилиндра совершает возвратно-поступательное движение поршень.
Что входит в цилиндро поршневую группу?
Цилиндро — поршневая группа (гильза, поршень, палец и поршневые кольца) играет важнейшую роль в работе двигателя, являясь основным ресурсоопределяющим конструктивным модулем.
Что такое гильзы в двигателе?
Гильза цилиндра двигателя — это металлическая втулка внутри которой перемещается поршень. Внутри гильзы происходит рабочий цикл — происходит цикл сжатия топливной смеси и расширения газов, которые перемещают поршень. Гильза является одной из самых нагруженных деталей автомобиля.
Какая жидкость заливается в цилиндр сцепления?
Тормозная жидкость (ТЖ) — одна из основных рабочих жидкостей авто. Она заполняет систему гидропривода сцепления и управления тормозами и обеспечивает передачу усилия от главного тормозного цилиндра к колесным механизмам.
Что входит в комплект поршневой группы?
В состав поршневой группы входит:Поршень для установки в один цилиндр.Комплект поршневых колец на один поршень.Гильза (1 шт.) блока цилиндров.Поршневой палец для одного поршня.Комплект уплотнений для установки одной гильзы.Комплект стопорных колец для одного пальца
Как появляются задиры в цилиндрах?
Причины задиров на теле цилиндров: Температурный перегрев деталей; Малый уровень масла в поддоне двигателя; Несоблюдение технических условий при проведении расточки блока цилиндров; Неправильный подбор поршней при сборке двигателя.