Какие технические характеристики и физические свойства некоторых
В ряду материалов, известных с незапамятных времен и повсеместно применяемых во многих сферах человеческой деятельности, металлы всегда занимали особое место. Причина их чрезвычайно высокой популярности легко объяснима: наряду с высокой прочностью они обладают повышенной тепло- и электропроводностью, пластичностью (ковкостью), особым металлическим блеском (отражательной способностью).
Металлами называются кристаллические вещества с закономерным расположением атомов в узлах пространственной решетки, обладающие непрозрачностью, характерным металлическим блеском и хорошей способностью проводить тепло, электрический ток и отражать световые лучи. Для металлов характерны также плотная кристаллическая структура, высокая прочность, способность к значительным пластическим деформациям, хорошие литейные свойства, свариваемость [3].
Бывают чистые металлы и металлические сплавы.
Металлические сплавы – это вещества, образовавшиеся в результате затвердевания жидких расплавов, состоящих из двух или нескольких компонентов. Металлические сплавы могут состоять только из металлов (сплав меди и цинка – латунь) и из металлов с малым содержанием неметаллов (сплав железа с углеродом – чугун и сталь). Сплавы могут обладать различными физическими, химическими и механическими свойствами путем изменения компонентов и соотношения между ними.
Металлы подразделяются на чёрные и цветные. К чёрным металлам относятся железо и сплавы на его основе. Черные металлы имеют высокую температуру плавления, большую плотность, высокую твердость. К ним относятся железо и сплавы на его основе – сталь и чугун.
Сталь – это сплав железа с углеродом в количестве 0,02 – 2,14%.
Чугун – это железоуглеродистый сплав с содержанием углерода 2,14 – 6,67%.
Они имеют наибольшее применение в строительстве, так как их стоимость значительно ниже цветных металлов (нежелезных).
Цветные металлы обладают низкой температурой плавления, большой пластичностью, имеют характерную окраску (красную, белую, желтую). К ним относятся медь, цинк, алюминий, никель, олово, свинец, золото, серебро).
Классификация металлов:
-
Черные металлы – имеют высокую температуру плавления, большую плотность, высокую твердость. К ним относятся железо и сплавы на его основе – сталь и чугун.
Сталь – это сплав железа с углеродом в количестве 0,02 – 2,14%.
Чугун – это железоуглеродистый сплав с содержанием углерода 2,14 – 6,67%.
Классификация сплавов:
- по основному компоненту — железные, алюминиевые и т.д.
- по плотности: легкие (магниевые, алюминиевые) с малой плотностью до 5000 кг на м куб.; и тяжелые (на основе вольфрама) с высокой плотностью не менее 15000 кг на м куб.
- по температуре плавления: легкоплавкие (температура плавления до 1539℃ — олово, свинец, цинк, самая низкая температура плавления у ртути 38, 87℃) и тугоплавкие (температура плавления выше 1539℃ — титан, хром, вольфрам).
- по применению:
- антифрикционные;
- коррозионно-стойкие (сплавы на основе железа, меди, алюминия);
- криогенные (сплавы на основе железа, алюминия), характеризуются комплексом тепловых, электрических, механических свойств и предназначены для работы при низких температурах (от -269 до+20);
- магнитные (сплавы, обладающие ферромагнетизмом);
- немагнитные.
2.2. Свойства металлов и сплавов. Физические свойства
Свойства металлов и сплавов делятся на:
- физические;
- химические;
- механические;
- технологические.
Физические свойства – это те свойства, которые определяются без воздействия силы. К физическим свойствам металлов относятся: плотность, температура плавления, тепло- и электропроводность, расширение при нагревании, намагничивание.
Плотность – масса, содержащаяся в единице объема (кг/м3):
где m – масса, кг (г); V – объема, м3 (см3).
По плотности различают металлы:
- тяжелые (плотность более 5000 кг/м3),
- легкие (плотность менее 5000 кг/м3), самый легкий металл — литий с плотностью 0, 531.
Температура плавления – способность металлов при нагревании переходить из твердого состояния в жидкое.
Электропроводность – это способность металлов проводить электрический ток под действием внешнего электрического поля. Электропроводность металлов в тысячи раз выше электропроводности неметаллических тел. Наибольшей электропроводностью обладают чистые металлы – медь, алюминий, железо. У сплавов электропроводность ниже. Из металлов, которые хорошо проводят электрический ток, делают электрические провода.
Теплопроводность – это способность металлов передавать тепло от более нагретых к менее нагретым участкам с той или иной скоростью. Высокая теплопроводность металлов позволяет быстро и равномерно нагревать их и охлаждать. Из технических металлов наибольшей теплопроводностью облает медь. Теплопроводность железа значительно ниже, а теплопроводность стали меняется в зависимости от содержания в ней компонентов. При повышении температуры теплопроводность уменьшается, при понижении – увеличивается.
Известно, что все металлы при нагревании расширяются, а при охлаждении сжимаются. Расширение при нагревании – это увеличение размеров (объемов) металлов и сплавов при нагревании. Это свойство надо учитывать при ковке, сварке изделий.
Интересно знать: Тепловое расширение
Намагничивание – способность металлов и сплавов намагничиваться под действием магнитного поля.
По степени намагничиваемости различают:
- ферромагнитные металлы, способны намагничиваться под действием электрического поля (кобальт, никель, железо, а также ряд их сплавов);
- парамагнитные – способны слабо намагничиваться (алюминий, хром, титан);
- диамагнитные – не притягиваются к магниту, отталкиваются от него (медь, олово).
2.3. Химические свойства металлов и сплавов
Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.
К химическим свойствам металлов и сплавов относят:
- коррозионную стойкость (способность материала противостоять различным видам коррозии);
- кислотостойкость (способность металлов и сплавов противостоять разрушающему действию кислот. Например, соляная кислота разрушает алюминий и цинк, а свинец не разрушает; серная кислота разрушает цинк и железо, но почти не действует на свинец, алюминий и медь);
- щелочестойкость (способность противостоять разрушающему действию щелочей. Щелочи особенно сильно разрушают алюминий, олово и свинец);
- жаростойкость (способность металлов и сплавов противостоять разрушению кислородом при нагреве. Для повышения жаростойкости вводят специальные примеси в металл, как, например, хром, ванадий, вольфрам).
2.4. Механические свойства металлов и сплавов
Механическими называют свойства, которые определяются с воздействием силы. К ним относятся: прочность, твёрдость, пластичность, упругость, ударная вязкость и жаропрочность металлов.
Прочность – способность металла сопротивляться разрушению при действии на него внешних сил. Прочность – одно из важных свойств металлов. Для точного определения и измерения прочности из металла или сплава изготовляют образец и подвергают его испытанию на специальной разрывной машине, которая постепенно, но с возрастающей силой растягивает образец до полного его разрыва. Наибольшее напряжение, которое может выдержать образец металла не разрушаясь, называется пределом прочности для данного металла или временным сопротивлением разрыву.
Прочность определяется в испытаниях на растяжение, сжатие, изгиб, кручение и срез (Рис.2.1).
Рис.2.1. Определение прочности металла
Твердость – способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю), а после закалки — 500 . . . 600 НВ (Рис.2.2).
Рис. 2.2. Схема определения твердости: а — по Бринеллю; б — по Рoквеллу; в — по Виккерсу
Ударная вязкость – способность металла сопротивляться действию ударных нагрузок.
Хрупкость – свойство металла разрушаться без заметной пластической деформации.
Вязкость – способность металла оказывать сопротивление ударным внешним силам. Вязкость — свойство обратное хрупкости.
Упругость – способность металла восстанавливать форму и объем после прекращения действий внешних сил. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.
Пластичность – способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.
Необходимость определения пластичности металлов вызывается тем, что пластичные металлы можно подвергать обработке давлением, т. е. ковать, штамповать или на прокатных станах превращать слитки металлов в полосы, листы, прутки, рельсы и многие другие изделия и заготовки.
В противоположность пластичным хрупкие металлы под действием нагрузки разрушаются без изменения формы. При испытании хрупкие образцы разрушаются без удлинения, внезапно. Хрупкость является отрицательным свойством. Вполне пригодным для изготовления деталей машин будет не только прочный, но и в определенной мере пластичный металл.
Интересно знать: Испытание строительной арматуры на растяжение
Способность металлов принимать значительную пластическую деформацию в горячем и холодном состоянии широко используется в технике. При этом изменение формы тела осуществляется преимущественно с помощью давящего на металл инструмента. Поэтому полученное изделие таким способом называют обработкой металлов давлением или пластической обработкой. Обработка металлов давлением представляет собой важный технологический процесс металлургического производства. При этом обеспечивается не только придание слитку или заготовке необходимой формы и размеров, но совместно с другими видами обработки существенно улучшаются механические и другие свойства металлов.
Прокатка, волочение, прессование, ковка, штамповка представляют собой различные виды обработки металлов давлением в пластическом состоянии. Среди различных методов пластической обработки прокатка занимает особое положение, поскольку данным способом производят изделия, пригодные для непосредственного (в состоянии поставки) использования в строительстве и машиностроении (шпунт, рельсы, профили сельскохозяйственного машиностроения и пр.).
2.5. Технологические свойства и пробы металлов
Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки. К ним относятся: ковкость, свариваемость, обрабатываемость, износостойкость, заполняемость форм.
Ковкостью называют способность металлов и сплавов принимать необходимую форму под действием внешних сил, как в холодном, так и в горячем состоянии.
Жидкотекучестью называют способность металлов и сплавов заполнять литейные формы. Высокой жидкотекучестью обладает чугун.
Свариваемость – способность металла образовывать качественные сварные соединения.
Обрабатываемость резанием называют способность металлов и сплавов поддаваться механической обработке режущим инструментом.
Износостойкость – это способность металла и стали противостоять изменению свойств и разрушению в течении времени, при механическом, физическом или химическом воздействии. Для того чтобы увеличить износостойкость металла, есть различные способы. Например, это могут быть усиливающие конструкции, которые помогают компенсировать износ и равномерно распределить его. Также часто производят улучшение самого металла, покрывая его специальными средствами и т.д.
Главное свойство износостойких сталей – повышенная твердость, которая обеспечивается присутствием в составе марганца и других легирующих элементов. Причем чем сильнее нагрузка на элемент, тем более износостойкой и твердой становится деталь, а разрушения поверхности и внутренней структуры не происходит.
Технологическими пробами называют испытания материала с целью выявления пригодности его к тому или иному виду обработки. Технологические пробы металлов весьма разнообразны. Они служат для качественной или сравнительной оценки металла.
Испытания на изгиб стальных труб (Рис. 2.3., г) определяют способность труб загибаться без трещин и надрывов на угол 90°. Перед испытанием трубу 4 (наружным диаметром до 60 мм) заполняют чистым сухим речным песком или другим наполнителем. Испытание заключается в плавном изгибе образца любым способом, позволяющим загнуть образец так, чтобы его наружный диаметр dm в одном месте не стал меньше 85% от начального. Образец считается выдержавшим испытание, если на нем не появились изломы, надрывы, расслоения.
Испытание на отбортовывание труб (Рис. 2.3., в) используют для определения способности труб к отбортовке на угол 90°. Конец трубы 4 отбортовывается с помощью оправки 2 усилием Р пресса до получения фланца заданного диаметра D. Рабочая поверхность оправки должна быть чисто обработанной и обладать высокой твердостью (HRC не менее 50). Радиус закругления оправки, которым формируется борт, должен быть равен двукратной толщине стенки трубы (R= 2s). Отбортовывание считается качественным, если на фланце не обнаружено надрывов и трещин.
Испытание на сплющивание труб (Рис. 2.3., б) служит для определения их способности сплющиваться до определенной высоты Н без трещин и надрывов. Конец трубы или ее отрезок длиной 20–50 мм сплющивают между двумя параллельными плоскостями. Если труба сварная, то шов на ней должен располагаться по горизонтальной оси, как показано на рисунке. Сплющивание труб производят плавно со скоростью не более 25 мм/мин. Образец выдержал испытание, если на нем не появились трещины или надрывы.
Рис.2.3. Технологические испытания: а – на осадку; б – на сплющивание; в – на отбортование труб; г – на изгиб труб; 1 – образец до осадки; 2 – образец после осадки; 3 – оправка; 4 — труба
Искровая проба предназначена для определения марки стали (конструкционная, инструментальная или быстрорежущая). Принадлежность стали к определенной марке определяется этим способом достаточно точно.
Определение марки стали по искре производится на наждачном круге. При нажатии металла на быстро вращающийся наждачный круг образуется сноп искр, которые отличаются друг от друга по форме и цвету.
Для более правильного определения состава стали по искре необходимо иметь станки с соответствующими наждачными кругами и контрольные образцы стали потребляемых марок.
По длине искр, форме, их окраске, количеству и характеру звездочек судят о химическом составе стали (процентное содержание в сплаве углерода и присутствии в нем вольфрама, марганца и других элементов) (Рис.2.4).
С повышением процентного содержания углерода в конструкционной стали искровой пучок ее приобретает сходство с искровым пучком инструментальной стали.
Количество и плотность звездообразных разветвлений дают специалисту возможность определить примерное содержание углерода в стали.
Цвет искр зависит также от марки стали и постепенно изменяется от темно-желтого у малоуглеродистой стали до светло-желтого у инструментальной стали.
Быстрорежущую сталь узнают по темно-красному цвету искр. Искровые нити многократно прерываются, и пучки иногда слабо разветвляются.
Рис.2.4. Проба стали на искру
Комплекс ценных физических, химических, технологических и эксплуатационных свойств, обусловленный особенностями строения металлов и сплавов, выгодно отличает их от других материалов и во многих случаях делает незаменимыми. Однако металлы не лишены некоторых недостатков: способность металлов разрушаться под воздействием агрессивных сред и подверженность деформациям при изменении температурного режима.
Интересно знать: Сталь и её виды
Определение марки стали по цвету и форме искры
Способность металлов принимать значительную пластическую деформацию в горячем и холодном состоянии широко используется в технике. При этом изменение формы тела осуществляется преимущественно с помощью давящего на металл инструмента. Поэтому полученное изделие таким способом называют обработкой металлов давлением или пластической обработкой. Обработка металлов давлением представляет собой важный технологический процесс металлургического производства. При этом обеспечивается не только придание слитку или заготовке необходимой формы и размеров, но совместно с другими видами обработки существенно улучшаются механические и другие свойства металлов.
Прокатка, волочение, прессование, ковка, штамповка представляют собой различные виды обработки металлов давлением в пластическом состоянии. Среди различных методов пластической обработки прокатка занимает особое положение, поскольку данным способом производят изделия, пригодные для непосредственного (в состоянии поставки) использования в строительстве и машиностроении (шпунт, рельсы, профили сельскохозяйственного машиностроения и пр.).
БЛОК САМОКОНТРОЛЯ
Для повторения и закрепления теоретического материала ознакомьтесь с презентацией «Свойства металлов и сплавов»
Физические свойства некоторых металлов
Отношение массы тела к его объему является постоянной величиной для данного вещества и называется плотностью.
Плотность и удельный вес имеют большое значение при выборе металлических материалов для изготовления различных изделий. Так, детали и конструкции в приборостроении, в авиа- и вагоностроении наряду с высокой прочностью должны обладать малой плотностью. Из металлов, наиболее широко применяемых в технике, наименьшую плотность имеют магний и алюминий.
Все металлы как тела кристаллического строения переходят при определенной температуре из твердого состояния в жидкое и наоборот. Температура, при которой металл переходит из твердого состояния в жидкое, называется температурой плавления.
Температура плавления является важным физическим свойством металлов. Знание температуры плавления металлов и сплавов необходимо в металлургии, в литейном производстве, при горячей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием металлических материалов.
Способность металлов передавать теплоту от более нагретых частей тела к менее нагретым называется теплопроводностью.
Среди металлических материалов лучшей теплопроводностью обладают серебро, медь, алюминий. Эти же металлы являются и лучшими проводниками электрического тока.
Теплопроводность металлов имеет большое практическое значение. Из металлов и сплавов, обладающих высокой теплопроводностью, изготовляют детали машин, которые при работе поглощают или отдают теплоту.
Металлы и сплавы с низкой теплопроводностью для полного прогрева нуждаются в медленном и длительном нагревании. Быстрый нагрев и быстрое охлаждение таких металлических материалов может вызвать образование трещин. Это необходимо учитывать при термической обработке, горячей обработке давлением, литье в металлические формы и т. д.
Различные вещества, в том числе и металлы, при нагревании расширяются, при охлаждении — сжимаются. Неодинаковость величины теплового линейного расширения материалов характеризуется коэффициентом линейного расширения α, который показывает, на какую долю первоначальной длины l0 при 0 °С удлинилось тело вследствие нагревания его на 1°С. Единица измерения α — °С -1 .
Тепловое расширение металлов необходимо учитывать при изготовлении и эксплуатации точных измерительных приборов и инструментов, изготовлении литейных форм, горячей обработке металлов давлением и в других случаях, связанных с нагреванием и охлаждением.
Детали точных приборов и измерительных инструментов изготавливаются из материалов с малым коэффициентом линейного расширения, детали автоматически действующих механизмов, которые, удлиняясь, должны замыкать электрическую цепь, делают из материалов с большим коэффициентом линейного расширения.
Электропроводностью называется способность металлов проводить электрический ток.
Высокой электропроводностью обладают те металлы, которые хорошо, т. е. без потерь на тепло, проводят электрический ток.
Магнитные свойства. Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. Сильно выраженными магнитными свойствами обладают железо, никель, кобальт и их сплавы. Перечисленные выше металлические материалы называют ферромагнитными. У остальных металлов и сплавов магнитные свойства выражены крайне слабо, поэтому практически они считаются немагнитными.
Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.
Магнитной проницаемостью называют способность металлов намагничиваться под действием магнитного поля.
При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определённой температуре (точка Кюри) исчезают (точка Кюри для железа — 768°С, у никеля — 360° С, у кобальта — 1130° С.). Выше этой температуры металлы становятся парамагнетиками (слабомагнитными материалами).
К химическим свойствам металлов следует отнести их способность сопротивляться химическому или электрохимическому воздействию различных сред (коррозии) при нормальных и высоких температурах.
Рассмотренные выше физические свойства металлов обнаруживаются в явлениях, не сопровождающихся изменением вещества. Так, например, нагрев металлов или прохождение через металлы электрического тока не сопровождается химическими изменениями их. При химических же явлениях происходит превращение металлов в другие вещества с иными свойствами.
Многие металлы подвергаются химическому изменению под воздействием внешней среды, т. е. разрушаются от коррозии. Мерой коррозионной стойкости служит скорость распространения коррозии металлов в данной среде и в данных условиях: чем эта скорость меньше, тем металл более коррозионностоек.
Высокой коррозионной стойкостью в атмосфере и в агрессивных средах обладают никель, титан и их сплавы. Титан и его сплавы по коррозионной стойкости приближаются к благородным металлам.
Прочность — это способность материала сопротивляться действию внешних сил без разрушения.
Упругость — это способность материала восстанавливать свою первоначальную форму и размеры после прекращения действия внешних сил, вызвавших деформацию.
Пластичность — это способность материала изменять свою форму и размеры под действием внешних сил, не разрушаясь, и сохранять полученные деформации после прекращения действия внешних сил.
Механическими свойствами металлов называется совокупность свойств, характеризующих способность металлических материалов сопротивляться воздействию внешних усилий (нагрузок).
К механическим свойствам металлических материалов относятся: прочность, твердость, пластичность, упругость, вязкость, хрупкость, усталость, ползучесть и износостойкость.
Твердость — способность металла оказывать сопротивление проникновению в него другого, более твердого тела.
Прочность — способность металла сопротивляться разрушению под действием внешних сил.
Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление).
Пластичность — способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.
Вязкость – способность металла оказывать сопротивление быстровозрастающим (ударным) нагрузкам.
Технологические свойства металлов и сплавов характеризуют их способность поддаваться различным методам горячей и холодной обработки. К технологическим свойствам металлов и сплавов относятся литейные свойства, ковкость, свариваемость, обрабатываемость режущими инструментами, прокаливаемость.
Обрабатываемость металлов характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.
Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.
Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.
Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.
Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.
Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах. Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры. Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.
Красноломкасть — склонность металла к переходу в хрупкое состояние с повышением температуры.
При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.
Понятие сплава, их классификация и свойства.
В технике металлами называют все металлические материалы. К ним относятся простые металлы и сложные металлы — сплавы.
Простые металлы состоят из одного основного элемента и незначительного количества примесей других элементов. Например, технически чистая медь содержит от 0,1 до 1% примесей свинца, висмута, сурьмы, железа и других элементов.
Сплавы — это сложные металлы, представляющие сочетание какого-либо простого металла (основы сплава) с другими металлами или неметаллами. Например, латунь — сплав меди с цинком. Здесь основу сплава составляет медь.
Химический элемент, входящий в состав металла или сплава, называется компонентом. Кроме основного компонента, преобладающего в сплаве, различают еще легирующие компоненты, вводимые в состав сплава для получения требуемых свойств. Так, для улучшения механических свойств и коррозионной стойкости латуни в нее добавляют алюминий, кремний, железо, марганец, олово, свинец и другие легирующие компоненты.
По числу компонентов сплавы делятся на двухкомпонентные (двойные), трехкомпонентные (тройные) и т. д. Кроме основных и легирующих компонентов, в сплаве содержатся примеси других элементов.
Большинство сплавов получают сплавлением компонентов в жидком состоянии. Другие способы приготовления сплавов: спекания, электролиз, возгонка. В этом случае вещества называются псевдосплавами.
Способность металлов к взаимному растворению создает хорошие условия для получения большого числа сплавов, обладающих самыми разнообразными сочетаниями полезных свойств, которых нет у простых металлов.
Сплавы превосходят простые металлы по прочности, твердости, обрабатываемости и т. д. Вот почему они применяются в технике значительно шире простых металлов. Например, железо — мягкий металл, почти не применяющийся в чистом виде. Зато самое широкое применение в технике имеют сплавы железа с углеродом — стали и чугуны.
На современном этапе развития техники наряду с увеличением количества сплавов и усложнением их состава большое значение приобретают металлы особой чистоты. Содержание основного компонента в таких металлах составляет от 99,999 до 99,999999999% и более. Металлы особой чистоты нужны ракетостроению, атомной, электронной и другим новым отраслям техники.
В зависимости от характера взаимодействия компонентов различают сплавы:
1) механические смеси;
2) химические соединения;
3) твердые растворы.
1) Механическая смесь двух компонентов образуется тогда, когда они в твердом состоянии не растворяются друг в друге и не вступают в химическое взаимодействие. Сплавы — механические смеси (например, свинец — сурьма, олово — цинк) неоднородны по своей структуре и представляют смесь кристаллов данных компонентов. При этом кристаллы каждого компонента в сплаве полностью сохраняют свои индивидуальные свойства. Вот почему свойства таких сплавов (например, электросопротивление, твердость и др.) определяются как среднее арифметическое от величины свойств обоих компонентов.
2) Твердые растворы характеризуются образованием общей пространственной кристаллической решетки атомами основного металла-растворителя и атомами растворимого элемента. Структура таких сплавов состоит из однородных кристаллических зерен, подобно чистому металлу. Существуют твердые растворы замещения и твердые растворы внедрения.
К таким сплавам относятся латуни, медноникелевые, железохромистые и др.
Сплавы — твердые растворы являются самыми распространенными. Их свойства отличаются от свойств составляющих компонентов. Так, например, твердость и электросопротивление у твердых растворов значительно выше, чем у чистых компонентов. Благодаря высокой пластичности они хорошо поддаются ковке и другим видам обработки давлением. Литейные свойства и обрабатываемость резанием у твердых растворов низкие.
3) Химические соединения, подобно твердым растворам, являются однородными сплавами. При их затвердевании образуется совершенно новая кристаллическая решетка, отличная от решеток составляющих сплав компонентов. Поэтому свойства химического соединения самостоятельны и не зависят от свойств компонентов. Химические соединения образуются при строго определенном количественном соотношении сплавляемых компонентов. Состав сплава химического соединения выражается химической формулой. Эти сплавы обладают обычно высоким электросопротивлением, большой твердостью, малой пластичностью. Так, химическое соединение железа с углеродом — цементит (Fe3C) тверже чистого железа в 10 раз.
Диаграммы состояния сплавов
Д иаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры.
По диаграмме состояния можно судить о структурных превращениях, происходящих в любом сплаве данной системы при нагревании и медленном охлаждении. Имея диаграмму состояния, можно заранее определять технологические и механические свойства всех сплавов данной системы. Она позволяет также установить температуры начала и конца кристаллизации сплавов, что имеет большое практическое значение. Кроме того, диаграмма состояния позволяет выбрать из данной системы сплавы определенного состава, наиболее удовлетворяющие требованиям практики.
Существуют различные типы диаграмм состояния: двойных сплавов, тройных сплавов и т. д.
Для примера рассмотрим диаграмму состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состоянии. Такими сплавами, образующими твердые растворы, являются сплавы системы медь — никель (Сu — Ni).
Рисунок 4 — Диаграмма состояния сплавов системы медь – никель
Сплавы в отличие от простых металлов плавятся обычно не при постоянной температуре, а в некотором интервале температур.
Чёрные и цветные металлы
Все применяемые в технике металлы делятся на черные и цветные.
К черным металлам относятся железо и его сплавы (сталь и чугун). Все остальные металлы и сплавы составляют группу цветных металлов.
Наибольшее распространение в технике получили черные металлы. Это обусловлено большими запасами железных руд в земной коре, сравнительной простотой технологии выплавки черных металлов, их высокой прочностью.
Основными металлическими материалами современной техники являются сплавы железа с углеродом. В зависимости от содержания углерода эти сплавы делятся на стали и чугуны.
Цветные металлы применяются в технике реже, чем черные. Это объясняется незначительным содержанием многих цветных металлов в земной коре, сложностью процесса их выплавки из руд, недостаточной прочностью. Цветные металлы дороже черных. Во всех случаях, когда это возможно, их заменяют черными металлами, пластмассами и другими материалами. Однако цветные металлы имеют ценные свойства, которые делают их применение в технике неизбежным. Например, медь и алюминий обладают высокой электро- и теплопроводностью и применяются в электропромышленности. Сплавы магния, алюминия и титана благодаря малому удельному весу широко применяются в самолетостроении и т. д.
Из большого числа цветных металлов и сплавов наибольшее распространение получили сплавы меди, алюминия, магния и титана.
Цветные металлы условно подразделяются на:
а) легкие (литий, магний, бериллий, алюминий, титан и др.), обладающие малой плотностью;
б) легкоплавкие (ртуть, цезий, олово, свинец, цинк и др.), имеющие низкую температуру плавления; самую низкую температуру плавления имеет ртуть ( — 38,87° С).
в) тугоплавкие , имеющие температуру плавления более высокую, чем железо (т. е. выше 1539° С);
Самый тугоплавкий металл — вольфрам. Его температура плавления 3380° С. Высокую температуру плавления имеют также тантал (2996° С), ниобий (2468° С), молибден (2610° С), ванадий (1919° С) и др.
Из тугоплавких металлов и сплавов изготавливают детали, работающие при высоких температурах. Особенно возросла роль тугоплавких металлов в связи с развитием новых отраслей техники — электроники, ядерной энергетики, ракетной и космической техники. Тугоплавкие металлы применяют также как легирующие добавки к сталям.
г) благородные (золото, серебро, металлы платиновой группы), обладающие высокой устойчивостью против коррозии;
д) урановые металлы (уран, торий и д.р.) — актиноиды, используемые в атомной технике;
е) редкоземельные (РЗМ) (скандий, иттрий, лантан и лантаноиды), применяемые в качестве присадок к сплавам других элементов;
ж) щелочноземельные (натрий, калий, литий), не находящие применения в свободном состоянии (за исключением особых случаев, например в качестве теплоносителей в ядерных реакторах).
Физические свойства металлов
Физические свойства металлов отличают их от неметаллов. Все металлы, кроме ртути, – твёрдые кристаллические вещества, являющиеся восстановителями в окислительно-восстановительных реакциях.
Положение в таблице Менделеева
Металлы занимают I-II группы и побочные подгруппы III-VIII групп. Металлические свойства, т.е. способность отдавать валентные электроны или окисляться, увеличиваются сверху вниз по мере увеличения количества энергетических уровней. Слева направо металлические свойства ослабевают, поэтому наиболее активные металлы находятся в I-II группах, главных подгруппах. Это щелочные и щелочноземельные металлы.
Определить степень активности металлов можно по электрохимическому ряду напряжений. Металлы, стоящие до водорода, наиболее активны. После водорода стоят слабоактивные металлы, не вступающие в реакцию с большинством веществ.
Рис. 1. Электрохимический ряд напряжений металлов.
Строение
Вне зависимости от активности все металлы имеют общее строение. Атомы в простом металле расположены не хаотично, как в аморфных веществах, а упорядоченно – в виде кристаллической решётки. Удерживает атомы в одном положении металлическая связь.
Такой вид связи осуществляется за счёт положительно заряженных ионов, находящихся в узлах кристаллической ячейки (единицы решётки), и отрицательно заряженных свободных электронов, которые образуют так называемый электронный газ. Электроны отделились от атомов, превратив их в ионы, и стали перемещаться в решётке хаотично, скрепляя ионы вместе. Без электронов решётка бы распалась за счёт отторжения одинаково заряженных ионов.
Различают три типа кристаллической решётки. Кубическая объемно-центрированная состоит из 9 ионов и характерна хрому, железу, вольфраму. Кубическая гранецентрированная включает 14 ионов и свойственная свинцу, алюминию, серебру. Из 17 ионов состоит гексагональная плотноупакованная решётка цинка, титана, магния.
Рис. 2. Виды кристаллических решёток.
Свойства
Строение кристаллической решётки определяет основные физические и химические свойства металлов. Металлы блестят, плавятся, проводят тепло и электричество. Промышленность и металлургия нашли применение физическим свойствам металлов в изготовлении деталей, фольги, корпусов машин, зеркал, бытовой и промышленной химии. Особенности металлов и их использование представлены в таблице физических свойств металлов.
Свойства
Особенности
Примеры
Применение
Способность отражать солнечный свет
Наиболее блестящими металлами являются Hg, Ag, Pd
Лёгкие – имеют плотность меньше 5 г/см 3
Na, K, Ba, Mg, Al. Самый лёгкий металл – литий с плотностью 0,533 г/см 3
Изготовление облицовки, деталей самолётов
Тяжёлые – имеют плотность больше 5 г/см 3
Sn, Fe, Zn, Au, Pb, Hg. Самый тяжёлый – осмий с плотностью 22,5 г/см 3
Использование в сплавах
Способность изменять форму без разрушений (можно раскатать в тонкую фольгу)
Наиболее пластичные – Au, Cu, Ag. Хрупкие – Zn, Sn, Bi, Mn
Формовка, сгибание труб, изготовление проволоки
Мягкие – режутся ножом
Изготовление мыла, стекла, удобрений
Твёрдые – сравнимы по твёрдости с алмазом
Самый твёрдый – хром, режет стекло
Изготовление несущих конструкций
Легкоплавкие – температура плавления ниже 1000°С
Производство радиотехники, жести
Тугоплавкие – температура плавления выше 1000°С
Cr (1890°С), Mo (2620°С), V (1900°С). Наиболее тугоплавкий – вольфрам (3420°С)
Изготовление ламп накаливания
Способность передавать тепло другим телам
Лучше всего проводят ток и тепло Ag, Cu, Au, Al
Приготовление пищи в металлической посуде
Способность проводить электрический ток за счёт свободных электронов
Передача электричества по проводам
Рис. 3. Примеры применения металлов.
Что мы узнали?
Из урока 9 класса узнали о физических свойствах металлов. Кратко рассмотрели положение металлов в периодической таблице и особенности строения кристаллической решётки. Благодаря строению металлы обладают пластичностью, твёрдостью, способностью плавиться, проводить электрический ток и тепло. Свойства металлов неоднородны. Различают лёгкие и тяжёлые металлы, лёгкоплавкие и тугоплавкие, мягкие и твёрдые. Физические свойства используются для изготовления сплавов, электрических проводов, посуды, мыла, стекла, конструкций различной формы.
Металлы: характеристики, свойства, применение и классификация
Мета́лл (в переводе с латыни означает шахта) составляет определенную категорию элементов, обладающих свойствами металлов в отличие от группы неметаллов. Около 80% процентов существующих элементов являются металлами. Алюминий является самым распространенным в земной коре. Характерной чертой является наличие особого блеска, который позволяет отличить металл от каменной породы.
На сегодняшний день насчитывается около 118 химических элементов, но не каждый завоевал официальное признание. Открытые металлы условно подразделяют на следующие элементы:
- к щелочной категории 6;
- к щелочноземельным 6;
- к переходным 38;
- к легким 11;
- полуметаллы 7;
- лантан и лантаноиды 14;
- актиноиды 14;
- бериллий и магний не относятся ни к одной категории.
Соответственно, можно сделать вывод, что из всех существующих веществ 96 можно отнести к металлам. Если рассматривать с точки зрения астрофизики, то это химические элементы, вес которых больше гелия.
Происхождение слова металл
Существует три основных теории, которые раскрывают тайну происхождения слова металл:
- в старорусский период слово было заимствовано из немецкого языка. В немецком языке слово появилось из латыни, что в переводе на русский означает рудник или металл. Латинское слово было заимствовано с греческого языка (греч metallum);
- с греческого слово означает добываю из земли. Изначально толкование предполагало природные рудники и копьи;
- в немецком языке слово появилось в переводе с латыни рудник.
Небольшая историческая справка
Впервые человек повстречал металл в виде золота, меди и серебра. Они встречаются на земле в свободной форме. Постепенно к ним стали присоединяться другие элементы, которые встречаются в круговороте природы. К соединениям, которые легко выделить, можно отнести: олово, ртуть, железо, свинец. Данные металлы известны людям с древних времен.
С точки зрения алхимии, зарождение металла происходит в недрах земли. Совершенствование происходило под планетным воздействием, а метаморфозы происходили веками. В результате появились драгоценные металлы в виде золота и серебра. Ко второй группе относились медь, олово, свинец, железо и ртуть, которые обладают свойствами благородных металлов. При этом они отличаются летучестью, жидким состоянием. Многие ученые выделяли данные элементы в особую категорию. Ртуть была причислена к элементам, из которых образовывались металлы. Именно она была носителем металлических свойств.
Цинк, висмут, сурьма и мышьяк обладают множеством схожих свойств с металлами, но ковкость в данном случае уступает реальным металлам. Поэтому была образована новая категория полуметаллов. Классификация на металлы и полуметаллы появилась еще в 18 веке. Первоначально алхимики расценивали процесс преобразования сплавов схожих по цвету с золотом, как настоящее превращение в драгоценный металл. Они считали, что достаточно поменять только цвет, чтобы свойства тоже изменились. Алхимики думали, что это вещества, которые относятся к категории сложных, состоят из серы и ртути.
Алхимики стали стараться ускорить естественный процесс созревания, поддерживая необходимые условия. Естественное превращение металлов имело прямое отождествление с обычным ростом и развитием вещей. Данная тема относилась к таинствам жизни. Именно в этот период возникла история о философском камне. Но не существует никаких точных инструкций, которые смогли бы превратить золото или серебро в камень, дающий бессмертие. Существует множество теорий. Основным борцом против идеи алхимиков считался Бойль.
С наступлением 17 века человечество узнало о том, какую роль играет воздух в процессе горения, как увеличивается массовая доля при окислении. Однако об этом знал Гебер в 8 веке. Казалось, что вопрос об элементарном составе металла будет в скором времени закрыт, но в химии появился новый раздел под названием флогистонная теория. Это привело к возникновению нового заблуждения. Процесс горения был классифицирован как разложение, то есть распад на составляющие элементы. Выделение горючего элемента происходило в форме пламени, а остальные оставались в исходном состоянии. Поэтому начали появляться противоречия. Бехер старался прийти к формированию единых понятий и предполагал, что в металле присутствует земля трех сортов: земля, горючая и ртутная. Именно при таких условиях Шталь разработал свою теорию, согласно которой причиной горючести является неизвестная, названная флогистоном. Образование металлов происходит посредством земли и флогистона. В 18 веке Ломоносов учитывал 6 металлов: Au, Ag, Cu, Sn, Fe, Pb. Ученый из России в процессе исследования металлов и неметаллов дал определение: металлом называется светлое тело, которое возможно ковать. К таким можно отнести только 6 тел: серебро, медь, золото, олово, свинец и железо. Но в этой теории была большая дыра, так как тело в процессе обжига увеличивалось в массе. В таком случае флогистон должен обладать определенным свойством в виде отрицательного тяготения. В конце 18 века данную теорию смог опровергнуть Лавуазье и доказал, что металлы являются простыми веществами. В 1789 он подготовил список простых веществ, в который включено 17 металлов. По мере прогрессирования, количество химических элементов возрастало.
Лавуазье смог установить, какую функцию воздух выполняет в процессе горения. Он показал, что увеличение веса металла при обжигании происходит в результате присоединения кислорода, который выделяется из воздуха.
В первой половине 19 века произошло новое открытие: установлены спутники Плутона, которые были получены посредством электролиза. Появились задатки классификации редкоземельных элементов, открыты новые неизвестные в процессе химического анализа минералов.
Посредством спектрального анализа появились Cs, Rb, Tl, In. Менделеев предсказал существование металлов. Например, метод ядерных превращений, начиная с середины 20 века. Искусственным методом получены радиоактивные металлы. В период 19-20 вв металлургия получила новую химико-физическую базу. В это же время появились новые исследования в области свойств металлов и сплавов, учитывая состав и строение. Такие гибриды могут иметь высокий потенциал в тепло- и энергетическом типе устойчивости. Вследствие внедрения неметаллических элементов молекулы меняют свое строение, анионы и катионы.
Нахождение металлов в природе
Основная часть всех металлов добываются из земной коры, она там расположена в виде соединений, только малоактивные, называемые благородными, встречаются в свободном формате. Обычно металлы встречаются в природе в формате руды и различных соединений.
Наличие самых распространенных металлов в коре Земли можно представить примерно таким соотношением (масс. %): алюминий 8,45; железо 4,4; кальций 3,3; натрий 2,6; калий 2,5; магний 2,1; титан 0,61.
Из металлов получаются: оксиды, сульфиды, карбонаты и другие химические вещества. Получить чистые металлы для их обработки в будущем можно только после очистки их от примесей, которые содержатся в руде. Руды скопления металлосодержащих минералов, входящих в состав горных пород. Металл в составе руды находится в окисленном состоянии, независимо от типа, поэтому основным способом получения металлов является процесс восстановления. Если в руде содержатся различные металлы, то руду подвергают расщеплению на отдельные соединения химическим методом. Таким образом, при воздействии на полиметаллические руды хлора (в присутствии восстановителя) образуются хлориды разных металлов, которые благодаря разнице степеней летучести могут отделяться один от другого и от не хлорированной части руд. Чистые хлориды ряда металлов восстанавливают активными металлами до свободных металлов.
Изредка сложные полиметаллические типы руд для выделения сложных сплавов подвергают восстановлению без предварительного разделения. Они бывают загрязненные так называемыми пустыми породами, которые затрудняют восстановление. Тогда процессу добычи металла предшествует очистка руды или ее обработка механическим, химическим, физико-химическим и другим методом. Из физико-химических наибольшее распространение получил метод флотации, в основе которого различная смачиваемость водой частиц смеси различных материалов.
Чистые оксиды металлов легче и удобнее поддаются процессу восстановления. В связи с этим водные оксиды обезвоживают, а сульфидные руды переводят в оксидные путем окислительного обжига.
Руды, в которых совсем небольшое содержание металлов подвергаются гидрометаллургической переработке водными растворами кислот или щелочей. При этом соединения некоторых металлов переходят в раствор.
Изучением этого занимается наука металлургия. Металлургия разделяет руды на чёрные металлы (на основе железа) и цветные (в их состав не входит железо, всего около 70 элементов). Исключением можно назвать около 16 элементов: т. н. благородные металлы (золото, серебро и др.), и некоторые другие (например, ртуть, медь), которые присутствуют без примесей. Золото, серебро и платина относятся также к драгоценным металлам. Кроме того, в малых количествах они присутствуют в морской воде, растениях, живых организмах (играя при этом важную роль).
Известно, что организм человека на 3 % состоит из металлов. Больше всего в наших клетках кальция и натрия, сконцентрированного в лимфатических системах. Магний накапливается в мышцах и нервной системе, медь в печени, железо в крови.
Добыча металла
Металлы часто извлекают из земли средствами горной промышленности, результат добытые руды в самородном карьере служат относительно богатым источником необходимых элементов. Для выяснения расположения руды используют специальные поисковые методы, которые включают в себя разведку руд и исследование мест рождений и окружающей среды. Месторождения, как правило, делятся на карьеры (разработки руд на поверхности), в которых добыча ведется путем извлечения грунта с использованием тяжелой техники, а также на подземные шахты.
После добычи руды ее превращают в металлы при помощи химического, а также электролитического воздействия. Самыми популярными способами распространенными способами добычи металлов считаются пирометаллургия и гидрометаллургия. Рассмотрим подробнее:
- Пирометаллургией называют восстановительную работу металлов, при которой используются углерод (карботермия), водород, металлы-восстановители (металлотермия):
WO3 + 3H2 = W + 3H2O; CuS + O2 = CuO + SO2; CuO + H2 = Cu + H2O; BeF2 + Mg = Be + MgF2.
При использовании алюминия, метод получения называется алюминотермией. Алюмотермические методы применяются в извлечении из оксидов тугоплавких металлов (ванадий, хром, молибден и др.). Иногда в качестве восстановителя требуется магний. Метод магний термии нашел применение при получении титана, циркония, тантала из хлоридов этих металлов. Углерод по своей восстановительной активности уступает многим металлам. Тем не менее, карботермия имеет широкое распространение при восстановлении металлов малой активности (медь) и средней (железо, цинк, свинец).
- Гидрометаллургией называют процесс восстановления металлов, происходит из водных растворов их солей при обычной температуре (комнатной). В этом случае восстанавливаемый металл находится в мелко раздробленном состоянии, требуются активные металлы.
- Электрометаллургией является процесс добычи под воздействием электрического тока, который пропускают через раствор или расплав соли металла:
AgNO3 + H2O → Ag + O2 + HNO3.
Электролизом водных растворов получают сравнительно малоактивные металлы (медь, серебро, никель и т. д.). А электролизом расплавов солей высокоактивные (щелочные и щелочноземельные металлы, алюминий).
Некоторые отрасли промышленности и техники нуждаются в металлах особой чистоты. Например, они востребованы при конструировании ядерных реакторов, в электронной и медицинской технике. Особо чистые металлы отличаются по своим физическим свойствам от обычных. Такие свойства, как пластичность, электро- и теплопроводность, а также сопротивление коррозии у чистых металлов имеют более высокие значения.
Сейчас проблема получения чистых и сверхчистых металлов решается различными способами.
- Электролитическое рафинирование. Это формат электролиза с использованием чернового металла в качестве анода (активного). При пропускании постоянного электрического тока через электролит черновой металл окисляется (растворяется), а на катоде, изготовленном из чистого металла, из раствора (расплава) восстанавливается (осаждается) металл.
- Термическая диссоциация летучих соединений очистка, основанная на способности некоторых соединений металлов разлагаться при высокой температуре. Например, иодиды титана и циркония, являясь летучими соединениями, при повышении температуры разлагаются на чистый металл и йод.
- Зонная плавка процесс, основанный на различной степени растворимости примесей в твердом и расплавленном состояниях. Через зону с высокой температурой медленно продвигают стержень из очищаемого металла. По мере продвижения расплавленная область, где собираются все примеси, постепенно перемещается в конец стержня, который входит в горячую зону последним. Операцию повторяют многократно, каждый раз механически отделяя от чистого металла конец стержня, содержащий примеси.
В современной технике применяют около 30 000 сплавов легкоплавких и тугоплавких, очень твердых и пластичных, с большой и малой электрической проводимостью, ферромагнитных и др. В сплавах ныне используют практически все известные металлы (кроме искусственно полученных трансплутониевых элементов). Мера использования определяется доступностью металла и содержанием в земной коре, а также степенью концентрирования в месторождениях и трудностью получения. В последние годы наблюдается тенденция некоторого снижения роли железа и увеличение использования легких металлов (Al, Mg) и наиболее доступных редких металлов (Ti, Nb, Zr).
Свойства металлов
Свойства металлов можно разделить на четыре основных направления.
Характерные свойства металлов
Основные характеристики металлов:
- Металлический блеск (характерный признак не только металлов: его имеют и неметаллы азот и углерод в виде графита).
- Хорошая электропроводность всех металлов.
- Возможность легкой механической обработки (см.: пластичность; однако некоторые металлы, например германий и висмут, не пластичны).
- Высокая плотность (обычно металлы тяжелее неметаллов).
- Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы).
- Большая теплопроводность.
- В реакциях чаще всего являются восстановителями.
Атомы с промежуточными значениями степени окисления могут быть и окислителями, и восстановителями. Основные отличительные особенности металлов и неметаллов.
Положение в П. С.
Под диагональю бор-астат
Большой атомный радиус, число электронов на последнем слое от 1 до 3
Маленький, от 4 до 7 соответственно
Электропроводность, теплопроводность, блеск, ковкость, пластичность, по агрегатному состоянию, в основном, твердые
Диэлектрики, не блестящие, хрупкие, газы, жидкости и летучие твердые вещества
Окислительные (иногда восстановительные)
Физические свойства
Физические свойства металлов обусловлены металлической кристаллической решеткой и химической связью. В технике металлы принято классифицировать по различным физическим свойствам:
- плотности легкие (р < 5,0 г/см3) и тяжелые (р > 5,0 г/см3). Диапазон от 0,531 г/см3 (Li) до 22,6 г/см3 (Os). Плотность металлов связана с температурой их плавления. Легкие металлы обычно самые легкоплавкие, например, цезий с плотностью 1,87 г/см3 плавится при температуре +28 °С, а вольфрам с плотностью 19 г/см3 имеет температуру плавления, равную +3380 °С.
- температуре плавления легкоплавкие (tпл < 1000 °С) и тугоплавкие (tпл > 1000 °С). Диапазон температуры плавления от 38,87 °С (Hg) до 3380 °С (W).
Металлам характерны несколько свойств:
- Твердость сопротивление к проникновению в материал другого, более твердого тела;
- Теплота сублимации это характеристика, представляющая собой энергию, необходимую для перевода определенной массы металла в парообразное состояние. Теплота сублимации является мерой прочности связи в решетке металла. Характер изменения ее значений в побочных подгруппах аналогичен изменению температур плавления и кипения металлов.
- Износостойкость сохранение хорошего внешнего вида и физических свойств материала после сильного трения;
- Прочность стойкость к разрушению под воздействием внешней нагрузки;
- Упругость изменение формы материала под воздействием внешних сил и восстановление ее после того, как эти силы перестают на нее воздействовать;
- Теплопроводность это свойство металлов, обеспечиваемое взаимодействием электронов проводимости с ионами, находящимися в узлах кристаллической решетки. Теплопроводность металлов обусловлена в основном движением положительных электронов, поэтому коэффициент теплопроводности (3010-6.jpg) и электрической проводимости (s) металлов полностью связаны между собой соотношением 3010-7.jpg/(s•Т) = L = 2,45•10 -8 Вт•Ом/К2 (закон Видемана-Франца). Уд. коэф. теплопроводности металлов имеет значения от 425 (для Ag) до 8,41 (для Bi) Вт/(м-К).
- Пластичность изменение формы материала под внешним воздействием и сохранение ее после устранения этого воздействия;
- Усталость свойство материала выдерживать многократные нагрузки;
- Жароустойчивость сопротивление окислительным процессам при нагревании до высоких температур;
- Фотоэлектрический эффект это свойство металлов выбрасывать электроны с поверхности под действием электромагнитных волн, что обусловлено слабой связью валентных электронов с ядром.
- Полиморфизм это явление существования металла в разных формах в твердом состоянии, или способность принимать различные кристаллические формы.
- Вязкость способность материала вытягиваться под воздействием внешних сил;
- Магнитные свойства присущи фактически всем металлам, поскольку они являются магнетиками веществами, изменяющими или приобретающими магнитный момент под действием внешнего (стороннего) магнитного поля. Мерой измерения магнитных свойств металлов служат следующие величины: остаточная индукция, коэрцитивная сила и магнитная проницаемость (магнитная восприимчивость). Металлы по магнитным свойствам могут быть разделены на три основные группы:
- диамагнетики выталкиваются из магнитного поля и ослабляют его;
- парамагнетики втягиваются магнитным полем, незначительно усиливая его;
- ферромагнетики усиливают магнитное поле на порядки величин.
Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твердом состоянии, однако обладают различной твердостью.
Гладкая поверхность металлов отражает большой процент света это явление называется металлическим блеском. Однако в порошкообразном состоянии большинство металлов теряют свой блеск; алюминий и магний, тем не менее, сохраняют свой блеск и в порошке. Наиболее хорошо отражают свет алюминий, серебро и палладий из этих металлов изготовляют зеркала. Для изготовления зеркал иногда применяется и родий, несмотря на его исключительно высокую цену: благодаря значительно большей, чем у серебра или даже палладия, твердости и химической стойкости, родиевый слой может быть значительно тоньше, чем серебряный.
Цвет у большинства металлов примерно одинаковый светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно желтого, красного и светло-желтого цвета.
Электрические свойства металлов
Электропроводность обусловлена присутствием в металле свободных электронов, которые направленно перемещаются при наложении электрического тока. Металлы проводники первого рода, так как проводят электрический ток без изменений своего строения. При нагревании электропроводность снижается, так как усиливается колебательное движение ионов, что затрудняет движение электронов. При охлаждении же электропроводность возрастает, близко абсолютного 0 она стремится к бесконечности это явление названо сверхпроводимостью.
Причина электрического сопротивления рассеяние электронов на любых нарушениях периодичности кристаллического строения решетки: тепловых колебаниях ионов (фононах), самих электронах, а также дефектах. К ним относятся примесные атомы, дислокации, границы кристаллов и образцов. Мерой рассеяния служит длина свободного пробега l усредненное расстояние между двумя последовательными столкновениями электронов с дефектами:
где n концентрация электронов проводимости (порядка 10221023 см3), e заряд электрона, pF=2πℏ(3n/8π)1/3 т. н. граничный фермиевский импульс. При T=300 К длина свободного пробега l порядка 106 см; с понижением T длина пробега растёт, достигая (для высококачественных образцов) 0,11 см. Соответственно возрастает электропроводность и уменьшается удельное электрич. сопротивление 1. Отношение проводимости при T=4,2 К к проводимости при T=300 К характеризует совершенство и химич. чистоту металлов.
Сопротивление сплавов значительно выше сопротивления чистых пород. В веществах с большим ρ возникает локализация электронных состояний проводимость исчезает.
При плавлении подвижные электроны в нём сохраняются, поэтому сохраняется и большая проводимость, хотя разрушение дальнего порядка приводит к скачкообразному росту сопротивления. Исключение составляют Sb,Ga,Bi, — их сопротивление при плавлении уменьшается.
Химические свойства
Во всех реакциях простые вещества металлы проявляют только восстановительные свойства.
Металлы взаимодействуют с неметаллами, образуя бинарные соединения. По правилам ИЮПАК названия этих соединений образуются в соответствии со схемой:
Так, с очень активными неметаллами (галогенами, серой) металлы образуют соединения, которые молено рассматривать, как соли бескислородных кислот: 2Na + Cl2 = 2NaCl
Если металл проявляет переменные степени окисления, подобная соль имеет состав, который зависит от окислительных свойств неметалла. Например, железо энергично взаимодействует с хлором, образуя хлорид железа(III): 2Fe + 3Сl2 = 2FeCl3
При взаимодействии железа с серой, окислительная способность которой ниже, чем у галогенов, продуктом реакции является сульфид железа(II): Fe + S = FeS
При взаимодействии металлов с кислородом образуются оксиды или пероксиды:
Оксиды в этом случае имеют основный или амфотерный характер:
4Аl + 3O2 = 2Аl2O3
Эти реакции сопровождаются выделением большого количества теплоты и очень ярким пламенем, поэтому применяются для изготовления сигнальных ракет, фейерверков, салютов и других пиротехнических средств. Поэтому обращение с ними требует строгого соблюдения правил техники безопасности.
Продуктом горения железа в кислороде является смешанный оксид :
3Fe + 2O2 = Fe3O4
Металлы простые вещества, образованные элементами IA и IIАгрупп, в полном соответствии с названием этих групп взаимодействуют с водой с образованием щелочи и водорода. В общем виде эти реакции можно записать так:
2М + 2Н2O = 2МОН + Н2↑, где М щелочной металл
М + 2Н2O = М(ОН)2 + H2↑, где М Mg или щелочноземельный металл.
Для характеристики химических свойств металлов важное значение имеет их положение в электрохимическом ряду напряжений:
К, Са, Na, Mg, Al, Zn, Fe, Sn, Pb, (H2), Cu, Hg, Ag, Au
Вспомните известные вам из курса основной школы два вывода:
- взаимодействие металлов с растворами концентрированных кислот происходит, если металл находится в ряду напряжений левее водорода. Других кислотных взаимодействий нет;
- взаимодействие металлов с растворами солей происходит, если металл находится в ряду напряжений левее металла соли.
Лабораторный способом получения водорода:
Zn + 2НСl = ZnCl2 + H2↑
Zn0 + 2H+ = Zn2+ + H20
Аналогично протекает реакция металлов и с органическими кислотами, они вступают в реакцию:
2СН3СООН + Zn > (CH3COO)2Zn + Н2↑
2СН3СООН + Zn > 2СН3СОO + Zn2+ + Н20
Реакция между цинком и раствором сульфата меди(II) протекает согласно уравнению:
Zn + CuSO4 = ZnSO4 + Cu
Zn0 + Сu2+ = Zn2+ + Сu0
Подчеркнем, что в этом случае металл может находиться в ряду напряжений и после водорода, но не после металла соли. Например, реакция замещения серебра медью:
Cu + 2AgNO3 = Сu(NО3)2 + 2Ag
Cu0 + 2Ag+ = Cu2+ + 2Ag0
В завершение рассмотрим еще одно характерное не для всех металлов свойство, которое называется металлотермия. Такие активные металлы, как алюминий, кальций, магний, литий, способны взаимодействовать с оксидами других металлов. Для того чтобы началась такая реакция, смесь активного металла и оксида металла (ее называют термитной) необходимо поджечь. После этого процесс сопровождается выделением большого количества теплоты и света (отсюда и название процесса). Металлотермию применяют для получения и более ценных металлов: 2Аl + Сr2О3 = Al2O3 + 2Сг
Классификация (виды) металлов
Есть несколько разных классификаций металлов, о которых поговорим ниже в статье. Стандарты всех металлов прописаны в ГОСТ. Каждый из стандартов определяет требования к металлическим материалам, к их индивидуальным характеристикам и сферам использования. За все эти направленности отвечает химия строения металлов. Данные критерии становятся основными при выборе материала для определенной цели.
Все металлы делятся на четыре группы:
- s-металлы (все s-элементы, кроме Н и Не) простые. Бывают щелочные металлы и щелочноземельные элементы.
- р-металлы (элементы гр. IIIа, кроме В, а также Sn, Рb, Sb, Bi, Ро) простые.
- d-металлы. Выделяют платиновые металлы.
- f-металлы.
Группа редкоземельных элементов включает как d-, так и f-металлы (подгруппа Sc и лантаноиды).
Существует также техническая классификация металлов. В известной мере она перекликается с геохимическими классификациями элементов. Обычно выделяют следующие виды, которые отличаются химически:
- черные металлы (Fe);
- тяжелые цветные металлы Сu, Pb, Zn, Ni и Sn (к этой группе примыкают т.наз. малые, или младшие, металлы Со, Sb, Bi, Hg, Cd, некоторые из них иногда относят к редким металлам);
- легкие металлы (с плотностью меньше 5 г/см3)-Аl, Mg, Ca и т.д.;
- драгоценные металлы Au, Ag и платиновые металлы;
- легирующие (или ферросплавные) металлы Mn, Cr, W, Mo, Nb, V и др.;
- редкие металлы;
- радиоактивные металлы U, Th, Pu и др.
Отличия металлов от сплавов заключается в разных визуальных признаках, например, в зернистости и гладкости поверхности. Еще сплавы имеют теплопроводность и электропроводность. Чаще всего применяются в промышленности медные, титановые, бронзовые и алюминиевые типы сплавов. Эти элементы служат сырьем для производства разного рода деталей и выливания металлоконструкций.
Для более простого восприятия, в обиходе деление происходит всего на две основные группы. Такими группами являются черные и цветные металлы. Они не имеют схожести ни по свойствам, ни по промышленному применению. Ниже в статье разберем эти группы металлов подробнее.
Черные металлы
Черные металлы получили такое наименование из-за своего цвета, который изменяется от темно-серого до практически белоснежного (серебристо-белого или белого цвета сталь, например). Они обладают высокой плотностью и температурой плавления, твердостью. Среди всех черных металлов больше всего распространено и чаще всего применяется в промышленности обычное железо.
Класс черных металлов включает в себя два основных подвида, к которым относится сталь и чугун. Стали же в свою очередь могут быть углеродистыми или легированными.
Различные виды черных сплавов получили значительное распространение в области изготовления металлопроката. Они обладают отличными рабочими свойствами, поэтому на рынке черные металлы всегда востребованы.
Добывают материалы напрямую из железной руды при помощи доменной печи, где при температуре близко к 2000 градусов протекает процесс плавления руд, из которых сразу и получают железо. На самом деле способов выработки железа множество. Также помимо доменного процесса выплавки железа, существует еще вариант прямого получения железа из предварительно измельченной железной руды с добавлением специальной глины. При таком способе железо получается сразу твердое, которое потом приходится переплавлять в мощных электропечах. Помимо видов металлов и их сплавов, существуют также и разнообразные их марки, разновидность которых указывается в буквенно-цифровом виде, например Ст4. Такого рода группировка и маркировка черных металлов, очень облегчает работу и изготовление металлопроката.
Любой металлопрокат по форме, размерам и предельным отклонениям должен строго соответствовать в России требованиям ГОСТа. К черному металлу относятся следующие виды проката: листовой, сортовый, фасонный, трубный прокат. Чугун и сталь между собой очень похожи, за исключением количества содержащегося углерода. Основные характеристики:
- Чугуны сплавы содержащие углерод свыше 2,14 % (в некоторых чугунах доля углерода доходит до 6 %). Кроме углерода в чугунах и сталях содержатся иные компоненты. Например, марганец, кремний, сера, фосфор.
- Стали сплавы железа с углеродом при содержании углерода менее 2,14 %. Стали также бывают низкоуглеродистые (содержание углерода менее 0,25%), углеродистые (0,25 0,6 %), высокоуглеродистые (более 0,6 %). Низкоуглеродистые стали легко сваривается и весьма пластичны, высокоуглеродистые же напротив очень твердые, благодаря чему применяются в агрегатах режущих инструментов.
Цветные металлы
Цветные металлы также названы благодаря цвету простых веществ. Их цвет может быть красным, желтым, белым. Например, медь красного цвета, и ее сплавы имеют красноватый оттенок. Цветным металлам свойственны также уникальные физические и химические свойства. Важнейшими продуктами цветной металлургии являются титан, вольфрам, молибден и другие металлы, которые могут использоваться в качестве специальных легирующих добавок для производства сверхтвердых, тугоплавких, устойчивых к коррозии сплавов, широко применяемых в машино и станкостроении, в обороннокосмической отрасли.
Сплавы в сравнении с металлами более пластичные, мягкие и легкоплавкие. К механической обработке цветных металлов относится штамповка, ковка, прессование, прокатка, пайка, сварка и резка.
Типы цветных металлов:
- Тяжелые цветные металлы. К ним относится свинец, медь, олово, цинк, никель, ртуть.
- Легкие цветные металлы. К ним относится: алюминий, титан, магний, бериллий, стронций, кальций, литий, барий, калий, натрий, цезий и рубидий.
- Благородные цветные металлы. Это металлы, которые уже готовы и очищены на поверхности Земли. К примеру: платина, золото, серебро, осмий, родий, рутений, палладий.
- Тугоплавкие цветные металлы. Это вольфрам и ванадий, молибден и тантал, хром и ниобий, цирконий и марганец.
- Рассеянные цветные металлы, к которым относятся: индий, таллий, германий, рений, селен, гафний и теллур.
- Радиоактивные цветные металлы. Список: уран, торий, радий, нептуний, актиний, америций, протактиний, плутоний, эйнштейний, калифорний, фермий, нобелий, менделевий и лоуренсий.
Многочисленную группу составляют редкоземельные металлы, такие как: туллий, эрбий, прометий, лютеций, церий, лантан, неодим, празеодим, европий, самарий, тербий, гадолиний, гольмий, диспрозий, иттрий и скандий.
Стоит отметить, что большая часть литых изделий, а также проволока, квадраты, шестиугольники в виде прутков и мотков, ленты и полосы, листы и фольга изготавливаются из цветных металлов. Различают по толщине, фольга бывает тонкой в несколько мм. В последнее время в производстве даже начали использоваться порошки из данных металлов.
Сплавы металлов
В твердом состоянии металлы практически не взаимодействуют друг с другом, однако в расплавленном состоянии могут иметь место и растворение, и взаимодействие. Различные расплавленные металлы в большинстве случаев смешиваются друг с другом в любых соотношениях, образуя жидкие однородные системы. Сплавами называют материалы, которые состоят из двух и более металлических компонентов. Как правило, каждый сплав состоит из основы, в нее обычно входит несколько металлов, и так называемых легирующих элементов. Легирующие добавки нужны, чтобы придать сплаву мягкость, эластичность, твердость, коррозионную стойкость и другие свойства. Чаще всего в промышленности применяются смеси с использованием железа и алюминия, но вообще существует более 5 тысяч разновидностей сплавов. Сплавы делятся на два вида: литые и порошковые. Литые сплавы получаются путем смешивания расплавленных компонентов. А порошковый метод получения сплавов подразумевает прессование порошков нескольких металлов и их последующее спекания при высоких температурах. По назначению сплавы делятся на:
- конструкционные. Конструкционные сплавы предназначены для изготовления деталей автомобилей, техники и оборудования. Это обусловлено прежде всего их высокой прочностью, однородностью и непроницаемостью для жидкостей и газов. Кроме того, меняя рецептуру сплавов, можно менять их свойства в очень широких пределах.
- инструментальные. Из технологии инструментальных сплавов, как можно понять из названия, изготавливают инструменты например, различные молотки и ножи. В качестве инструментальных материалов применяются также алмаз, нитрид бора, керамика..
- специальные. Специальные сплавы используются для изготовления деталей специального назначения например, для предотвращения трения. Металлы используются как в качестве хороших проводников электричества (медь, алюминий), так и в качестве материалов с повышенным сопротивлением для резисторов и электронагревательных элементов (нихром и т. п.)
Сплавы подразделяются на твердые и мягкие, легкоплавкие и тугоплавкие, устойчивые к воздействию кислот и щелочей.
Электро- и теплопроводность сплавов высокая. Свойства сплавов зависят от свойств веществ, входящих в его состав.
Твердость сплава, состоящего из 99% меди и 1% бериллия, в 7 раз больше твердости меди.
Сплав, состоящий из 50,1% висмута, 24,9% свинца, 14,2% олова, 10,8% кадмия, имеет температуру плавления, равную 65,5°С (тогда как висмут плавится при 271,3°С, олово 231,9°С, кадмии 320,9°С, свинец 327,4°С).
Такие металлы, как цинк, медь, алюминии не реагируют с водой, тогда как сплав, состоящий из 5% цинка, 50% меди, 45% алюминия при нормальных условиях взаимодействует с водой и вытесняет водород.
Сплавы, также как и металлы, имеют кристаллическое строение, и свойства разнятся в зависимости от строения. При кристаллизации в некоторых сплавах происходит образование химических соединений, в некоторых же сплавах, с химической точки зрения, атомы металлов связь не образуют. Такие сплавы называют нередко твердыми растворами.
Гомогенные сплавы это сплавы, состоящие из металлов, имеющих близкие величины атомного радиуса, в узлах крис-ской решетки которых возможен обмен атомов (Си-Аи, Ag-Au, Na-K, Bi-Sb).
Гетерогенные сплавы это сплавы, состоящие из металлов, имеющих различные величины атомного радиуса и в узлах кристаллической решетки которых невозможен обмен атомов (Sn-Al, Zn-Al).
Интерметаллические (межметаллические сплавы это сплавы, состоящие из металлов, электроотрицательность которых резко отличается друг от друга. В этих сплавах металлы соединяются в различных эквивалентных соотношениях, образуя химические соединения (CuZn, Cu3Al, Cu5Zn8). В отдельных случаях металлы не растворяются друг в друге и не могут образовывать сплавы (железо и свинец). В быту практически не применяются изделия, изготовленные из чистого металла. Нередко в обычной жизни можно встретить гидроксиды или каустик. Их используют при производстве целлюлозы, моющих средств (мыла, шампуней и других), в нефтепереработке, при производстве биодизельного топлива, для нейтрализации кислот во всем мире.
При изготовлении сплавов их свойства заранее должны быть известны. Кристаллическая решетка сплавов сильно отличается от кристаллической решетки чистых металлов.
Примеры сплавов
Многие изделия станок, самолеты и ракеты, автомобили и мотоциклы, сковородки, кухонный инвентарь, ювелирные изделия делают из сплавов. Металлы-примеси (легирующие компоненты) очень часто изменяют свойства основного металла в лучшую, с точки зрения человека, сторону. Например, и железо и алюминий довольно мягкие металлы. Но, соединяясь друг с другом или с другими компонентами, они превращаются в сталь, дуралюмин и другие прочные конструкционные материалы. Рассмотрим свойства самых распространенных сплавов:
- Сталь (английский steel) это сплавы железа с углеродом, содержащие последнего до 2 %. В состав легированных сталей входят и другие химические элементы хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно перечислить. Малоуглеродистая сталь (менее 0,25 % углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55 %) идет на изготовление режущих инструментов: бритвенные лезвия, сверла и др.
- Железо составляет основу чугуна. Чугуном называется сплав железа с 24 % углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей и др.
- Бронза сплав меди, обычно с оловом как основным легирующим компонентом, а также с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка. Оловянные бронзы знали и широко использовали еще в древности. Большинство античных изделий из бронзы содержат 7590 % меди и 2510 % олова, что делает их внешне похожими на золотые, однако они более тугоплавкие. Это очень прочный сплав. Из него делали оружие до тех пор, пока не научились получать железные сплавы. С применением бронзы связана целая эпоха в истории человечества: Бронзовый век.
- Латунь это сплавы меди с Zn, Al, Mg. Это цветные сплавы с невысокой температурой плавления, их легко обрабатывать: резать, сваривать и паять.
- Мельхиор является сплавом меди с никелем, иногда с добавками железа и марганца. По внешним характеристикам мельхиор похож на серебро, но обладает большей механической прочностью. Сплав широко применяют для изготовления посуды и недорогих ювелирных изделий. Большинство современных монет серебристого цвета изготавливают из мельхиора (обычно 75 % меди и 25 % никеля с незначительными добавками марганца).
- Дюралюминий, или дюраль это сплав на основе алюминия с добавлением легирующих элементов медь, марганец, магний и железо. Он характеризуется своей стальной прочностью и устойчивостью к возможным перегрузкам. Это основной конструкционный материал в авиации и космонавтике.
Взаимодействие металлов с кислотами
Кислоты взаимодействуют с металлами, стоящими в ряду активности металлов левее водорода. Результатом такой реакции становится соль и выделение водорода. Можно сказать, что металлы, расположенные в ряду активности левее, вытесняют водород из кислот. Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода
Происходит реакция замещения, которая также является окислительно-восстановительной:
Взаимодействие серной кислоты H2SO4 с металлами
Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода:
Очень разбавленная кислота реагирует с металлом по классической схеме:
При увеличении концентрации кислоты образуются различные продукты:
3Mg+4H2SO43=3MgSO4+S↓+4H₂O
Реакции для азотной кислоты (HNO3)
При взаимодействии с активными металлами вариантов реакций еще больше:
Строение металла
Металлы мы знаем из детства, в школе о них рассказывали на таких уроках, как биология, химия, физика и даже математика. Учили формулу, понятия, что такое легирование и ионная структура. Оттуда все знают, что это неорганические вещества, выдерживающие высокий температурный режим без деформации. Также есть растворимые в некоторых условиях металлы и нерастворимые. Характеристики металлов легко можно понять лишь взглянув на кристаллическую решетку.
Так как металлы в твердом состоянии имеют кристаллическое внутреннее строение, то образующие их элементарные частицы (атомы) в процессе кристаллизации из расплавленного состояния должны группироваться в определенной последовательности. Эта последовательность имеет название — кристаллическая решетка, что являет собой воображаемый элемент объема, который образуется минимальным количеством атомов, чье многократное повторение позволяет построить весь кристалл.
В каждом узле решетки металла пространственной кристаллической определенным образом расположены положительно заряженные ионы, а между ними летают свободные электроны, что представляют собой некий электронный газ. Переходя от одного катиона к другому, они осуществляют связь между ионами и превращают кристалл металла в целое вещество. Такой вид связи, называемый металлическим, возникает между атомами за счет перекрытия электронных облаков внешних электронов. Металлическая связь отлична от неполярной ковалентной в первую очередь своей ненаправленностью. В кристалле с металлической связью электроны не закрепляются между 2-мя атомами, а принадлежат всем атомам этого кристалла, другими словами. они делокализованные. К особенности структуры кристаллов металла относятся высокие координационные числа 8÷12, которым соответствует значительная твердость.
Суммарно известно четырнадцать разных видов кристаллических решеток. Металлы в основном кристаллизируются в одном из трех видов структур: объемноцентрированной кубической (ОЦК), гранецентрированной кубической (ГЦК) и гексагональной плотноупакованной (ГПУ), о которых подробнее поговорим в статье ниже. Для изображения кристаллической решетки используются упрощенные схемы. В объемно-центрированной кубической решетке содержится суммарно 9 атомов, выразить можно так: 8 расположены в вершинах куба и 1 в центре объема. Такое строение решетки у молибдена, вольфрама, ванадия и других металлов.
Типы кристаллических решеток
У каждого металла кристаллическая решетка содержит положительно заряженные ионы одинакового размера, что расположены по принципу довольно плотной упаковки шаров одинакового диаметра. Отличают всего 3 основных вида упаковки/кристаллической решетки.
- Объемноцентрированный кубический тип решетки с координационным числом = 8 (натрий, калий, барий). Атомы металла расположены на верхах куба, а один в центре объема. Плотность упаковки шарообразными ионами в таком варианте равна 68%.
- Гранецентрированный формат кубической решетки с координационным числом = 12 (это тип алюминия, меди, серебра). Атомы металла расположены в вершинах куба и по центру каждой из граней. Плотность упаковки 74%.
- Гексагональный тип решетки с координационным числом = 12 (магний, цинк, кадмий). Атомы металла расположены на верхах и в центре шестигранных оснований призмы, а еще три в ее средней плоскости. Плотность упаковки 74%.
Из-за разной плотности атомов в различных направлениях кристалла наблюдаются разного формата свойства. Это явление было названо анизотропия. Оно характерно для одиночного типа кристаллов монокристаллов. Однако в основном металлы в обычных условиях имеют поликристаллический тип строения, другими словами — состоят из большого количества кристаллов/зерен, каждое из которых анизотропно. Особенности кристаллических решеток обусловливают характерные физические свойства металлов.
Особенности строения
Твердость объясняется значительным количеством структурного плана дефектов (междоузельные атомы, вакансии и др.). Из-за легкой отдачи электронов есть риск окисления металлов, что в свою очередь приводит к коррозии и дальнейшему разрушению и деградации его свойств. Способность к окислению легко понять по стандартному ряду активности металлов. Это и говорить в пользу смешивания металлов в сплавы с использованием легирующих элементов химической периодической таблицы, а также применение различного рода покрытий уже готового изделия.
Для наиболее адекватного описания электронных свойств металлов стоит использовать понятие квантовой механики. В структуре всех твердых тел с достаточной симметрией уровни энергии электронов отдельных атомов перекрываются и образуют разрешенные зоны, при этом зона, которую образовали валентные электроны, имеет соответствующее название — валентная зона. Слабая связь валентных электронов в металлах приводит к тому, что валентная зона в металлах получается очень широкой, и всех валентных электронов не хватает для ее полного заполнения.
Главная особенность и отличие от остальных этой частично заполненной зоны в том, что даже при малейшем напряжении в образце запускается перестройка валентных электронов. Проще говоря, протекает электричество.
Эта же высокая подвижность электронов приводит и к высокой теплопроводности и способности зеркально отражать электромагнитное излучение (что и придает металлам характерный им блеск).
Применение металлов
Металлы активно применяют как в повседневной жизни, в быту, так и для строения зданий, оборудования и транспорта.
Применение в качестве конструкционных материалов
Сплавы, которые используются для изготовления разного формата конструкций и строений, должны быть прочны и легкообрабатываемы. В строительстве, а также в машиностроении чаще всего применяются смеси из железа и алюминия. Например, из железа получают таким образом сталь, которая славится высокой прочностью и твердостью. Из нее можно ковать детали, прессовать листы, сваривать конструкции.
Чугун популярен для отлива крупногабаритного типа конструкций и формата деталей, для которых необходима высокая прочность и устойчивость. К примеру, много лет чугун служил основой для домашних батарей центрального отопления, а также канализационных труб. Из него делают сейчас котлы, перила и опоры для мостов, лестниц. Чугун довольно тяжелый, что не позволяет его использовать в некоторых сферах. Поэтому в некоторых отраслях его заменили на сплав алюминия, который прочный, но легкий. Дюралюминий, силумин соединения алюминия, они незаменимы в построении самолетов, вагонов, а также являются основой кораблестроения. В некоторых узлах самолетов используется смесь на основе магния. Смеси магния очень легкие и устойчивые к высоким температурам.
В ракетостроительной сфере применяют легкие и термостойкие соединения титана. Для повышения показателя ударопрочности, коррозионной стойкости и износоустойчивости сплавы легируют. Например, добавление марганца делает стали ударопрочными. Чтобы получить нержавеющую сталь, в состав смеси вводят хром.
Инструментальные сплавы
Из них делают режущие инструменты, штампы и детали для точных механизмов. Эти элементы должны быть износостойкими и с высокой прочностью, причем при нагревании должны оставаться такими же. Таким требованиям соответствуют, к примеру, нержавеющие стали, которые прошли специальную обработку высокими температурами (закалку). Для придания необходимых свойств инструментальные стали, как правило, легируют вольфрамом, ванадием или хромом.
Применение в электротехнической промышленности, электронике и приборостроении
Многочисленные металлические сплавы — незаменимый материал для изготовления особо чувствительных и высокоточных приборов, разного типа датчиков и преобразователей энергии. Например, на изготовление сердечников трансформаторов и деталей реле идет смесь никеля. Некоторые составляющие электромоторов изготавливают из соединений кобальта. Сплав никеля с хромом называется нихром и отличается высоким сопротивлением. Он часто основа для нагревательных элементов печей и электроприборов, которые используются в быту. Из медных сплавов в электротехнической промышленности и в приборостроении самое широкое применение нашли для латуни и бронзы. Первые незаменимы при изготовлении приборов, деталью которых являются запорные краны ( основные детали в конструкциях подачи газа и воды). Бронза идет обычно на изготовление пружин и пружинящих контактов.